mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
init README of deepdoc, add picture processer. (#71)
* init README of deepdoc, add picture processer. * add resume parsing
This commit is contained in:
@ -12,7 +12,7 @@
|
||||
#
|
||||
import copy
|
||||
import re
|
||||
from deepdoc.parser import bullets_category, is_english, tokenize, remove_contents_table, \
|
||||
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, \
|
||||
hierarchical_merge, make_colon_as_title, naive_merge, random_choices
|
||||
from rag.nlp import huqie
|
||||
from deepdoc.parser import PdfParser, DocxParser
|
||||
@ -47,7 +47,7 @@ class Pdf(PdfParser):
|
||||
return [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno","")) for b in self.boxes], tbls
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, txt.
|
||||
Since a book is long and not all the parts are useful, if it's a PDF,
|
||||
@ -94,7 +94,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
|
||||
sections = [t for t, _ in sections]
|
||||
# is it English
|
||||
eng = is_english(random_choices(sections, k=218))
|
||||
eng = lang.lower() == "english"#is_english(random_choices(sections, k=218))
|
||||
|
||||
res = []
|
||||
# add tables
|
||||
|
||||
@ -14,7 +14,7 @@ import copy
|
||||
import re
|
||||
from io import BytesIO
|
||||
from docx import Document
|
||||
from deepdoc.parser import bullets_category, is_english, tokenize, remove_contents_table, hierarchical_merge, \
|
||||
from rag.nlp import bullets_category, is_english, tokenize, remove_contents_table, hierarchical_merge, \
|
||||
make_colon_as_title
|
||||
from rag.nlp import huqie
|
||||
from deepdoc.parser import PdfParser, DocxParser
|
||||
@ -68,7 +68,7 @@ class Pdf(PdfParser):
|
||||
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes]
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, txt.
|
||||
"""
|
||||
@ -106,7 +106,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
# is it English
|
||||
eng = is_english(sections)
|
||||
eng = lang.lower() == "english"#is_english(sections)
|
||||
# Remove 'Contents' part
|
||||
remove_contents_table(sections, eng)
|
||||
|
||||
|
||||
@ -1,7 +1,6 @@
|
||||
import copy
|
||||
import re
|
||||
from deepdoc.parser import tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.nlp import huqie, tokenize
|
||||
from deepdoc.parser import PdfParser
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
@ -57,7 +56,7 @@ class Pdf(PdfParser):
|
||||
return [b["text"] + self._line_tag(b, zoomin) for b in self.boxes], tbls
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Only pdf is supported.
|
||||
"""
|
||||
@ -74,7 +73,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
# is it English
|
||||
eng = pdf_parser.is_english
|
||||
eng = lang.lower() == "english"#pdf_parser.is_english
|
||||
|
||||
res = []
|
||||
# add tables
|
||||
|
||||
@ -13,8 +13,7 @@
|
||||
import copy
|
||||
import re
|
||||
from rag.app import laws
|
||||
from deepdoc.parser import is_english, tokenize, naive_merge
|
||||
from rag.nlp import huqie
|
||||
from rag.nlp import huqie, is_english, tokenize, naive_merge
|
||||
from deepdoc.parser import PdfParser
|
||||
from rag.settings import cron_logger
|
||||
|
||||
@ -38,7 +37,7 @@ class Pdf(PdfParser):
|
||||
return [(b["text"], self._line_tag(b, zoomin)) for b in self.boxes]
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Supported file formats are docx, pdf, txt.
|
||||
This method apply the naive ways to chunk files.
|
||||
@ -80,7 +79,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
|
||||
parser_config = kwargs.get("parser_config", {"chunk_token_num": 128, "delimiter": "\n!?。;!?"})
|
||||
cks = naive_merge(sections, parser_config["chunk_token_num"], parser_config["delimiter"])
|
||||
eng = is_english(cks)
|
||||
eng = lang.lower() == "english"#is_english(cks)
|
||||
res = []
|
||||
# wrap up to es documents
|
||||
for ck in cks:
|
||||
|
||||
@ -15,8 +15,7 @@ import re
|
||||
from collections import Counter
|
||||
|
||||
from api.db import ParserType
|
||||
from deepdoc.parser import tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.nlp import huqie, tokenize
|
||||
from deepdoc.parser import PdfParser
|
||||
import numpy as np
|
||||
from rag.utils import num_tokens_from_string
|
||||
@ -140,7 +139,7 @@ class Pdf(PdfParser):
|
||||
}
|
||||
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Only pdf is supported.
|
||||
The abstract of the paper will be sliced as an entire chunk, and will not be sliced partly.
|
||||
@ -156,7 +155,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
doc["authors_sm_tks"] = huqie.qieqie(doc["authors_tks"])
|
||||
# is it English
|
||||
eng = pdf_parser.is_english
|
||||
eng = lang.lower() == "english"#pdf_parser.is_english
|
||||
print("It's English.....", eng)
|
||||
|
||||
res = []
|
||||
|
||||
56
rag/app/picture.py
Normal file
56
rag/app/picture.py
Normal file
@ -0,0 +1,56 @@
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import io
|
||||
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from rag.nlp import tokenize
|
||||
from deepdoc.vision import OCR
|
||||
|
||||
ocr = OCR()
|
||||
|
||||
|
||||
def chunk(filename, binary, tenant_id, lang, callback=None, **kwargs):
|
||||
try:
|
||||
cv_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, lang=lang)
|
||||
except Exception as e:
|
||||
callback(prog=-1, msg=str(e))
|
||||
return []
|
||||
img = Image.open(io.BytesIO(binary))
|
||||
doc = {
|
||||
"docnm_kwd": filename,
|
||||
"image": img
|
||||
}
|
||||
bxs = ocr(np.array(img))
|
||||
txt = "\n".join([t[0] for _, t in bxs if t[0]])
|
||||
eng = lang.lower() == "english"
|
||||
callback(0.4, "Finish OCR: (%s ...)" % txt[:12])
|
||||
if (eng and len(txt.split(" ")) > 32) or len(txt) > 32:
|
||||
tokenize(doc, txt, eng)
|
||||
callback(0.8, "OCR results is too long to use CV LLM.")
|
||||
return [doc]
|
||||
|
||||
try:
|
||||
callback(0.4, "Use CV LLM to describe the picture.")
|
||||
ans = cv_mdl.describe(binary)
|
||||
callback(0.8, "CV LLM respoond: %s ..." % ans[:32])
|
||||
txt += "\n" + ans
|
||||
tokenize(doc, txt, eng)
|
||||
return [doc]
|
||||
except Exception as e:
|
||||
callback(prog=-1, msg=str(e))
|
||||
|
||||
return []
|
||||
@ -13,46 +13,14 @@
|
||||
import copy
|
||||
import re
|
||||
from io import BytesIO
|
||||
from pptx import Presentation
|
||||
from deepdoc.parser import tokenize, is_english
|
||||
from rag.nlp import tokenize, is_english
|
||||
from rag.nlp import huqie
|
||||
from deepdoc.parser import PdfParser
|
||||
from deepdoc.parser import PdfParser, PptParser
|
||||
|
||||
|
||||
class Ppt(object):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
def __extract(self, shape):
|
||||
if shape.shape_type == 19:
|
||||
tb = shape.table
|
||||
rows = []
|
||||
for i in range(1, len(tb.rows)):
|
||||
rows.append("; ".join([tb.cell(0, j).text + ": " + tb.cell(i, j).text for j in range(len(tb.columns)) if tb.cell(i, j)]))
|
||||
return "\n".join(rows)
|
||||
|
||||
if shape.has_text_frame:
|
||||
return shape.text_frame.text
|
||||
|
||||
if shape.shape_type == 6:
|
||||
texts = []
|
||||
for p in shape.shapes:
|
||||
t = self.__extract(p)
|
||||
if t: texts.append(t)
|
||||
return "\n".join(texts)
|
||||
|
||||
class Ppt(PptParser):
|
||||
def __call__(self, fnm, from_page, to_page, callback=None):
|
||||
ppt = Presentation(fnm) if isinstance(
|
||||
fnm, str) else Presentation(
|
||||
BytesIO(fnm))
|
||||
txts = []
|
||||
self.total_page = len(ppt.slides)
|
||||
for i, slide in enumerate(ppt.slides[from_page: to_page]):
|
||||
texts = []
|
||||
for shape in slide.shapes:
|
||||
txt = self.__extract(shape)
|
||||
if txt: texts.append(txt)
|
||||
txts.append("\n".join(texts))
|
||||
txts = super.__call__(fnm, from_page, to_page)
|
||||
|
||||
callback(0.5, "Text extraction finished.")
|
||||
import aspose.slides as slides
|
||||
|
||||
@ -14,7 +14,7 @@ import re
|
||||
from io import BytesIO
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from deepdoc.parser import is_english, random_choices
|
||||
from rag.nlp import is_english, random_choices
|
||||
from rag.nlp import huqie, stemmer
|
||||
from deepdoc.parser import ExcelParser
|
||||
|
||||
@ -81,7 +81,7 @@ def beAdoc(d, q, a, eng):
|
||||
return d
|
||||
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Excel and csv(txt) format files are supported.
|
||||
If the file is in excel format, there should be 2 column question and answer without header.
|
||||
@ -113,7 +113,7 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
break
|
||||
txt += l
|
||||
lines = txt.split("\n")
|
||||
eng = is_english([rmPrefix(l) for l in lines[:100]])
|
||||
eng = lang.lower() == "english"#is_english([rmPrefix(l) for l in lines[:100]])
|
||||
fails = []
|
||||
for i, line in enumerate(lines):
|
||||
arr = [l for l in line.split("\t") if len(l) > 1]
|
||||
|
||||
@ -20,8 +20,7 @@ from openpyxl import load_workbook
|
||||
from dateutil.parser import parse as datetime_parse
|
||||
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from deepdoc.parser import is_english, tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.nlp import huqie, is_english, tokenize
|
||||
from deepdoc.parser import ExcelParser
|
||||
|
||||
|
||||
@ -112,7 +111,7 @@ def column_data_type(arr):
|
||||
return arr, ty
|
||||
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
|
||||
"""
|
||||
Excel and csv(txt) format files are supported.
|
||||
For csv or txt file, the delimiter between columns is TAB.
|
||||
@ -192,7 +191,7 @@ def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j])
|
||||
for i in range(len(clmns))]
|
||||
|
||||
eng = is_english(txts)
|
||||
eng = lang.lower() == "english"#is_english(txts)
|
||||
for ii, row in df.iterrows():
|
||||
d = {}
|
||||
row_txt = []
|
||||
|
||||
@ -13,12 +13,18 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import io
|
||||
from abc import ABC
|
||||
|
||||
from PIL import Image
|
||||
from openai import OpenAI
|
||||
import os
|
||||
import base64
|
||||
from io import BytesIO
|
||||
|
||||
from api.utils import get_uuid
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
|
||||
class Base(ABC):
|
||||
def __init__(self, key, model_name):
|
||||
@ -44,25 +50,26 @@ class Base(ABC):
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等。",
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/jpeg;base64,{b64}"
|
||||
},
|
||||
},
|
||||
{
|
||||
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
|
||||
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
|
||||
class GptV4(Base):
|
||||
def __init__(self, key, model_name="gpt-4-vision-preview"):
|
||||
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese"):
|
||||
self.client = OpenAI(api_key=key)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
b64 = self.image2base64(image)
|
||||
@ -76,18 +83,40 @@ class GptV4(Base):
|
||||
|
||||
|
||||
class QWenCV(Base):
|
||||
def __init__(self, key, model_name="qwen-vl-chat-v1"):
|
||||
def __init__(self, key, model_name="qwen-vl-chat-v1", lang="Chinese"):
|
||||
import dashscope
|
||||
dashscope.api_key = key
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
|
||||
def prompt(self, binary):
|
||||
# stupid as hell
|
||||
tmp_dir = get_project_base_directory("tmp")
|
||||
if not os.path.exists(tmp_dir): os.mkdir(tmp_dir)
|
||||
path = os.path.join(tmp_dir, "%s.jpg"%get_uuid())
|
||||
Image.open(io.BytesIO(binary)).save(path)
|
||||
return [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"image": f"file://{path}"
|
||||
},
|
||||
{
|
||||
"text": "请用中文详细描述一下图中的内容,比如时间,地点,人物,事情,人物心情等,如果有数据请提取出数据。" if self.lang.lower() == "chinese" else \
|
||||
"Please describe the content of this picture, like where, when, who, what happen. If it has number data, please extract them out.",
|
||||
},
|
||||
],
|
||||
}
|
||||
]
|
||||
|
||||
def describe(self, image, max_tokens=300):
|
||||
from http import HTTPStatus
|
||||
from dashscope import MultiModalConversation
|
||||
response = MultiModalConversation.call(model=self.model_name,
|
||||
messages=self.prompt(self.image2base64(image)))
|
||||
messages=self.prompt(image))
|
||||
if response.status_code == HTTPStatus.OK:
|
||||
return response.output.choices[0]['message']['content'], response.usage.output_tokens
|
||||
return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
|
||||
return response.message, 0
|
||||
|
||||
|
||||
@ -95,9 +124,10 @@ from zhipuai import ZhipuAI
|
||||
|
||||
|
||||
class Zhipu4V(Base):
|
||||
def __init__(self, key, model_name="glm-4v"):
|
||||
def __init__(self, key, model_name="glm-4v", lang="Chinese"):
|
||||
self.client = ZhipuAI(api_key=key)
|
||||
self.model_name = model_name
|
||||
self.lang = lang
|
||||
|
||||
def describe(self, image, max_tokens=1024):
|
||||
b64 = self.image2base64(image)
|
||||
|
||||
@ -5,3 +5,219 @@ retrievaler = search.Dealer(ELASTICSEARCH)
|
||||
|
||||
from nltk.stem import PorterStemmer
|
||||
stemmer = PorterStemmer()
|
||||
|
||||
import re
|
||||
from nltk import word_tokenize
|
||||
from . import huqie
|
||||
from rag.utils import num_tokens_from_string
|
||||
import random
|
||||
|
||||
BULLET_PATTERN = [[
|
||||
r"第[零一二三四五六七八九十百0-9]+(分?编|部分)",
|
||||
r"第[零一二三四五六七八九十百0-9]+章",
|
||||
r"第[零一二三四五六七八九十百0-9]+节",
|
||||
r"第[零一二三四五六七八九十百0-9]+条",
|
||||
r"[\((][零一二三四五六七八九十百]+[\))]",
|
||||
], [
|
||||
r"第[0-9]+章",
|
||||
r"第[0-9]+节",
|
||||
r"[0-9]{,3}[\. 、]",
|
||||
r"[0-9]{,2}\.[0-9]{,2}",
|
||||
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
|
||||
r"[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}\.[0-9]{,2}",
|
||||
], [
|
||||
r"第[零一二三四五六七八九十百0-9]+章",
|
||||
r"第[零一二三四五六七八九十百0-9]+节",
|
||||
r"[零一二三四五六七八九十百]+[ 、]",
|
||||
r"[\((][零一二三四五六七八九十百]+[\))]",
|
||||
r"[\((][0-9]{,2}[\))]",
|
||||
], [
|
||||
r"PART (ONE|TWO|THREE|FOUR|FIVE|SIX|SEVEN|EIGHT|NINE|TEN)",
|
||||
r"Chapter (I+V?|VI*|XI|IX|X)",
|
||||
r"Section [0-9]+",
|
||||
r"Article [0-9]+"
|
||||
]
|
||||
]
|
||||
|
||||
def random_choices(arr, k):
|
||||
k = min(len(arr), k)
|
||||
return random.choices(arr, k=k)
|
||||
|
||||
def bullets_category(sections):
|
||||
global BULLET_PATTERN
|
||||
hits = [0] * len(BULLET_PATTERN)
|
||||
for i, pro in enumerate(BULLET_PATTERN):
|
||||
for sec in sections:
|
||||
for p in pro:
|
||||
if re.match(p, sec):
|
||||
hits[i] += 1
|
||||
break
|
||||
maxium = 0
|
||||
res = -1
|
||||
for i, h in enumerate(hits):
|
||||
if h <= maxium: continue
|
||||
res = i
|
||||
maxium = h
|
||||
return res
|
||||
|
||||
|
||||
def is_english(texts):
|
||||
eng = 0
|
||||
for t in texts:
|
||||
if re.match(r"[a-zA-Z]{2,}", t.strip()):
|
||||
eng += 1
|
||||
if eng / len(texts) > 0.8:
|
||||
return True
|
||||
return False
|
||||
|
||||
|
||||
def tokenize(d, t, eng):
|
||||
d["content_with_weight"] = t
|
||||
if eng:
|
||||
t = re.sub(r"([a-z])-([a-z])", r"\1\2", t)
|
||||
d["content_ltks"] = " ".join([stemmer.stem(w) for w in word_tokenize(t)])
|
||||
else:
|
||||
d["content_ltks"] = huqie.qie(t)
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
|
||||
|
||||
def remove_contents_table(sections, eng=False):
|
||||
i = 0
|
||||
while i < len(sections):
|
||||
def get(i):
|
||||
nonlocal sections
|
||||
return (sections[i] if type(sections[i]) == type("") else sections[i][0]).strip()
|
||||
|
||||
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$",
|
||||
re.sub(r"( | |\u3000)+", "", get(i).split("@@")[0], re.IGNORECASE)):
|
||||
i += 1
|
||||
continue
|
||||
sections.pop(i)
|
||||
if i >= len(sections): break
|
||||
prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2])
|
||||
while not prefix:
|
||||
sections.pop(i)
|
||||
if i >= len(sections): break
|
||||
prefix = get(i)[:3] if not eng else " ".join(get(i).split(" ")[:2])
|
||||
sections.pop(i)
|
||||
if i >= len(sections) or not prefix: break
|
||||
for j in range(i, min(i + 128, len(sections))):
|
||||
if not re.match(prefix, get(j)):
|
||||
continue
|
||||
for _ in range(i, j): sections.pop(i)
|
||||
break
|
||||
|
||||
|
||||
def make_colon_as_title(sections):
|
||||
if not sections: return []
|
||||
if type(sections[0]) == type(""): return sections
|
||||
i = 0
|
||||
while i < len(sections):
|
||||
txt, layout = sections[i]
|
||||
i += 1
|
||||
txt = txt.split("@")[0].strip()
|
||||
if not txt:
|
||||
continue
|
||||
if txt[-1] not in "::":
|
||||
continue
|
||||
txt = txt[::-1]
|
||||
arr = re.split(r"([。?!!?;;]| .)", txt)
|
||||
if len(arr) < 2 or len(arr[1]) < 32:
|
||||
continue
|
||||
sections.insert(i - 1, (arr[0][::-1], "title"))
|
||||
i += 1
|
||||
|
||||
|
||||
def hierarchical_merge(bull, sections, depth):
|
||||
if not sections or bull < 0: return []
|
||||
if type(sections[0]) == type(""): sections = [(s, "") for s in sections]
|
||||
sections = [(t,o) for t, o in sections if t and len(t.split("@")[0].strip()) > 1 and not re.match(r"[0-9]+$", t.split("@")[0].strip())]
|
||||
bullets_size = len(BULLET_PATTERN[bull])
|
||||
levels = [[] for _ in range(bullets_size + 2)]
|
||||
|
||||
def not_title(txt):
|
||||
if re.match(r"第[零一二三四五六七八九十百0-9]+条", txt): return False
|
||||
if len(txt) >= 128: return True
|
||||
return re.search(r"[,;,。;!!]", txt)
|
||||
|
||||
for i, (txt, layout) in enumerate(sections):
|
||||
for j, p in enumerate(BULLET_PATTERN[bull]):
|
||||
if re.match(p, txt.strip()) and not not_title(txt):
|
||||
levels[j].append(i)
|
||||
break
|
||||
else:
|
||||
if re.search(r"(title|head)", layout):
|
||||
levels[bullets_size].append(i)
|
||||
else:
|
||||
levels[bullets_size + 1].append(i)
|
||||
sections = [t for t, _ in sections]
|
||||
for s in sections: print("--", s)
|
||||
|
||||
def binary_search(arr, target):
|
||||
if not arr: return -1
|
||||
if target > arr[-1]: return len(arr) - 1
|
||||
if target < arr[0]: return -1
|
||||
s, e = 0, len(arr)
|
||||
while e - s > 1:
|
||||
i = (e + s) // 2
|
||||
if target > arr[i]:
|
||||
s = i
|
||||
continue
|
||||
elif target < arr[i]:
|
||||
e = i
|
||||
continue
|
||||
else:
|
||||
assert False
|
||||
return s
|
||||
|
||||
cks = []
|
||||
readed = [False] * len(sections)
|
||||
levels = levels[::-1]
|
||||
for i, arr in enumerate(levels[:depth]):
|
||||
for j in arr:
|
||||
if readed[j]: continue
|
||||
readed[j] = True
|
||||
cks.append([j])
|
||||
if i + 1 == len(levels) - 1: continue
|
||||
for ii in range(i + 1, len(levels)):
|
||||
jj = binary_search(levels[ii], j)
|
||||
if jj < 0: continue
|
||||
if jj > cks[-1][-1]: cks[-1].pop(-1)
|
||||
cks[-1].append(levels[ii][jj])
|
||||
for ii in cks[-1]: readed[ii] = True
|
||||
for i in range(len(cks)):
|
||||
cks[i] = [sections[j] for j in cks[i][::-1]]
|
||||
print("--------------\n", "\n* ".join(cks[i]))
|
||||
|
||||
return cks
|
||||
|
||||
|
||||
def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?"):
|
||||
if not sections: return []
|
||||
if type(sections[0]) == type(""): sections = [(s, "") for s in sections]
|
||||
cks = [""]
|
||||
tk_nums = [0]
|
||||
def add_chunk(t, pos):
|
||||
nonlocal cks, tk_nums, delimiter
|
||||
tnum = num_tokens_from_string(t)
|
||||
if tnum < 8: pos = ""
|
||||
if tk_nums[-1] > chunk_token_num:
|
||||
cks.append(t + pos)
|
||||
tk_nums.append(tnum)
|
||||
else:
|
||||
cks[-1] += t + pos
|
||||
tk_nums[-1] += tnum
|
||||
|
||||
for sec, pos in sections:
|
||||
s, e = 0, 1
|
||||
while e < len(sec):
|
||||
if sec[e] in delimiter:
|
||||
add_chunk(sec[s: e+1], pos)
|
||||
s = e + 1
|
||||
e = s + 1
|
||||
else:
|
||||
e += 1
|
||||
if s < e: add_chunk(sec[s: e], pos)
|
||||
|
||||
return cks
|
||||
|
||||
|
||||
@ -21,6 +21,7 @@ import hashlib
|
||||
import copy
|
||||
import re
|
||||
import sys
|
||||
import traceback
|
||||
from functools import partial
|
||||
from timeit import default_timer as timer
|
||||
|
||||
@ -36,7 +37,7 @@ from rag.nlp import search
|
||||
from io import BytesIO
|
||||
import pandas as pd
|
||||
|
||||
from rag.app import laws, paper, presentation, manual, qa, table, book, resume
|
||||
from rag.app import laws, paper, presentation, manual, qa, table, book, resume, picture
|
||||
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.document_service import DocumentService
|
||||
@ -56,47 +57,31 @@ FACTORY = {
|
||||
ParserType.QA.value: qa,
|
||||
ParserType.TABLE.value: table,
|
||||
ParserType.RESUME.value: resume,
|
||||
ParserType.PICTURE.value: picture,
|
||||
}
|
||||
|
||||
|
||||
def set_progress(task_id, from_page=0, to_page=-1, prog=None, msg="Processing..."):
|
||||
def set_progress(task_id, from_page=0, to_page=-1,
|
||||
prog=None, msg="Processing..."):
|
||||
if prog is not None and prog < 0:
|
||||
msg = "[ERROR]"+msg
|
||||
cancel = TaskService.do_cancel(task_id)
|
||||
if cancel:
|
||||
msg += " [Canceled]"
|
||||
prog = -1
|
||||
|
||||
if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg
|
||||
if to_page > 0:
|
||||
msg = f"Page({from_page}~{to_page}): " + msg
|
||||
d = {"progress_msg": msg}
|
||||
if prog is not None: d["progress"] = prog
|
||||
if prog is not None:
|
||||
d["progress"] = prog
|
||||
try:
|
||||
TaskService.update_progress(task_id, d)
|
||||
except Exception as e:
|
||||
cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
|
||||
|
||||
if cancel:sys.exit()
|
||||
|
||||
|
||||
"""
|
||||
def chuck_doc(name, binary, tenant_id, cvmdl=None):
|
||||
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
||||
if suff.find("pdf") >= 0:
|
||||
return PDF(binary)
|
||||
if suff.find("doc") >= 0:
|
||||
return DOC(binary)
|
||||
if re.match(r"(xlsx|xlsm|xltx|xltm)", suff):
|
||||
return EXC(binary)
|
||||
if suff.find("ppt") >= 0:
|
||||
return PPT(binary)
|
||||
if cvmdl and re.search(r"\.(jpg|jpeg|png|tif|gif|pcx|tga|exif|fpx|svg|psd|cdr|pcd|dxf|ufo|eps|ai|raw|WMF|webp|avif|apng|icon|ico)$",
|
||||
name.lower()):
|
||||
txt = cvmdl.describe(binary)
|
||||
field = TextChunker.Fields()
|
||||
field.text_chunks = [(txt, binary)]
|
||||
field.table_chunks = []
|
||||
return field
|
||||
|
||||
return TextChunker()(binary)
|
||||
"""
|
||||
if cancel:
|
||||
sys.exit()
|
||||
|
||||
|
||||
def collect(comm, mod, tm):
|
||||
@ -109,29 +94,38 @@ def collect(comm, mod, tm):
|
||||
return tasks
|
||||
|
||||
|
||||
def build(row, cvmdl):
|
||||
def build(row):
|
||||
if row["size"] > DOC_MAXIMUM_SIZE:
|
||||
set_progress(row["id"], prog=-1, msg="File size exceeds( <= %dMb )" %
|
||||
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
||||
return []
|
||||
|
||||
callback = partial(set_progress, row["id"], row["from_page"], row["to_page"])
|
||||
callback = partial(
|
||||
set_progress,
|
||||
row["id"],
|
||||
row["from_page"],
|
||||
row["to_page"])
|
||||
chunker = FACTORY[row["parser_id"].lower()]
|
||||
try:
|
||||
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
||||
cks = chunker.chunk(row["name"], binary = MINIO.get(row["kb_id"], row["location"]), from_page=row["from_page"], to_page=row["to_page"],
|
||||
callback = callback, kb_id=row["kb_id"], parser_config=row["parser_config"])
|
||||
cron_logger.info(
|
||||
"Chunkking {}/{}".format(row["location"], row["name"]))
|
||||
cks = chunker.chunk(row["name"], binary=MINIO.get(row["kb_id"], row["location"]), from_page=row["from_page"],
|
||||
to_page=row["to_page"], lang=row["language"], callback=callback,
|
||||
kb_id=row["kb_id"], parser_config=row["parser_config"], tenant_id=row["tenant_id"])
|
||||
except Exception as e:
|
||||
if re.search("(No such file|not found)", str(e)):
|
||||
callback(-1, "Can not find file <%s>" % row["doc_name"])
|
||||
else:
|
||||
callback(-1, f"Internal server error: %s" % str(e).replace("'", ""))
|
||||
callback(-1, f"Internal server error: %s" %
|
||||
str(e).replace("'", ""))
|
||||
traceback.print_exc()
|
||||
|
||||
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
||||
cron_logger.warn(
|
||||
"Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
||||
|
||||
return
|
||||
|
||||
callback(msg="Finished slicing files. Start to embedding the content.")
|
||||
callback(msg="Finished slicing files(%d). Start to embedding the content."%len(cks))
|
||||
|
||||
docs = []
|
||||
doc = {
|
||||
@ -142,7 +136,8 @@ def build(row, cvmdl):
|
||||
d = copy.deepcopy(doc)
|
||||
d.update(ck)
|
||||
md5 = hashlib.md5()
|
||||
md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8"))
|
||||
md5.update((ck["content_with_weight"] +
|
||||
str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
d["create_timestamp_flt"] = datetime.datetime.now().timestamp()
|
||||
@ -173,7 +168,8 @@ def init_kb(row):
|
||||
|
||||
|
||||
def embedding(docs, mdl, parser_config={}):
|
||||
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [d["content_with_weight"] for d in docs]
|
||||
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
|
||||
d["content_with_weight"] for d in docs]
|
||||
tk_count = 0
|
||||
if len(tts) == len(cnts):
|
||||
tts, c = mdl.encode(tts)
|
||||
@ -182,7 +178,8 @@ def embedding(docs, mdl, parser_config={}):
|
||||
cnts, c = mdl.encode(cnts)
|
||||
tk_count += c
|
||||
title_w = float(parser_config.get("filename_embd_weight", 0.1))
|
||||
vects = (title_w * tts + (1-title_w) * cnts) if len(tts) == len(cnts) else cnts
|
||||
vects = (title_w * tts + (1 - title_w) *
|
||||
cnts) if len(tts) == len(cnts) else cnts
|
||||
|
||||
assert len(vects) == len(docs)
|
||||
for i, d in enumerate(docs):
|
||||
@ -192,7 +189,10 @@ def embedding(docs, mdl, parser_config={}):
|
||||
|
||||
|
||||
def main(comm, mod):
|
||||
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
|
||||
tm_fnm = os.path.join(
|
||||
get_project_base_directory(),
|
||||
"rag/res",
|
||||
f"{comm}-{mod}.tm")
|
||||
tm = findMaxTm(tm_fnm)
|
||||
rows = collect(comm, mod, tm)
|
||||
if len(rows) == 0:
|
||||
@ -203,15 +203,13 @@ def main(comm, mod):
|
||||
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
|
||||
try:
|
||||
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
|
||||
cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
# TODO: sequence2text model
|
||||
except Exception as e:
|
||||
callback(prog=-1, msg=str(e))
|
||||
continue
|
||||
|
||||
st_tm = timer()
|
||||
cks = build(r, cv_mdl)
|
||||
if cks is None:continue
|
||||
cks = build(r)
|
||||
if cks is None:
|
||||
continue
|
||||
if not cks:
|
||||
tmf.write(str(r["update_time"]) + "\n")
|
||||
callback(1., "No chunk! Done!")
|
||||
@ -233,11 +231,15 @@ def main(comm, mod):
|
||||
cron_logger.error(str(es_r))
|
||||
else:
|
||||
if TaskService.do_cancel(r["id"]):
|
||||
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
|
||||
ELASTICSEARCH.deleteByQuery(
|
||||
Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
|
||||
continue
|
||||
callback(1., "Done!")
|
||||
DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
||||
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
||||
DocumentService.increment_chunk_num(
|
||||
r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
||||
cron_logger.info(
|
||||
"Chunk doc({}), token({}), chunks({})".format(
|
||||
r["id"], tk_count, len(cks)))
|
||||
|
||||
tmf.write(str(r["update_time"]) + "\n")
|
||||
tmf.close()
|
||||
|
||||
Reference in New Issue
Block a user