mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-26 08:56:47 +08:00
Minor style changes (#11554)
### What problem does this PR solve? ### Type of change - [ ] Documentation Update
This commit is contained in:
@ -22,7 +22,7 @@ An **Agent** component is essential when you need the LLM to assist with summari
|
||||
|
||||
1. Ensure you have a chat model properly configured:
|
||||
|
||||

|
||||

|
||||
|
||||
2. If your Agent involves dataset retrieval, ensure you [have properly configured your target dataset(s)](../../dataset/configure_knowledge_base.md).
|
||||
|
||||
@ -91,7 +91,7 @@ Update your MCP server's name, URL (including the API key), server type, and oth
|
||||
|
||||
*The target MCP server appears below your Agent component, and your Agent will autonomously decide when to invoke the available tools it offers.*
|
||||
|
||||

|
||||

|
||||
|
||||
### 5. Update system prompt to specify trigger conditions (Optional)
|
||||
|
||||
|
||||
@ -62,9 +62,9 @@ docker build -t sandbox-executor-manager:latest ./executor_manager
|
||||
|
||||
3. Add the following entry to your /etc/hosts file to resolve the executor manager service:
|
||||
|
||||
```bash
|
||||
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
|
||||
```
|
||||
```bash
|
||||
127.0.0.1 es01 infinity mysql minio redis sandbox-executor-manager
|
||||
```
|
||||
|
||||
4. Start the RAGFlow service as usual.
|
||||
|
||||
@ -74,24 +74,24 @@ docker build -t sandbox-executor-manager:latest ./executor_manager
|
||||
|
||||
1. Initialize the environment variables:
|
||||
|
||||
```bash
|
||||
cp .env.example .env
|
||||
```
|
||||
```bash
|
||||
cp .env.example .env
|
||||
```
|
||||
|
||||
2. Launch the sandbox services with Docker Compose:
|
||||
|
||||
```bash
|
||||
docker compose -f docker-compose.yml up
|
||||
```
|
||||
```bash
|
||||
docker compose -f docker-compose.yml up
|
||||
```
|
||||
|
||||
3. Test the sandbox setup:
|
||||
|
||||
```bash
|
||||
source .venv/bin/activate
|
||||
export PYTHONPATH=$(pwd)
|
||||
uv pip install -r executor_manager/requirements.txt
|
||||
uv run tests/sandbox_security_tests_full.py
|
||||
```
|
||||
```bash
|
||||
source .venv/bin/activate
|
||||
export PYTHONPATH=$(pwd)
|
||||
uv pip install -r executor_manager/requirements.txt
|
||||
uv run tests/sandbox_security_tests_full.py
|
||||
```
|
||||
|
||||
### Using Makefile
|
||||
|
||||
|
||||
@ -83,13 +83,13 @@ You start an AI conversation by creating an assistant.
|
||||
|
||||
1. Click the light bulb icon above the answer to view the expanded system prompt:
|
||||
|
||||

|
||||

|
||||
|
||||
*The light bulb icon is available only for the current dialogue.*
|
||||
|
||||
2. Scroll down the expanded prompt to view the time consumed for each task:
|
||||
|
||||

|
||||

|
||||
:::
|
||||
|
||||
## Update settings of an existing chat assistant
|
||||
|
||||
@ -56,9 +56,9 @@ Once a tag set is created, you can apply it to your dataset:
|
||||
1. Navigate to the **Configuration** page of your dataset.
|
||||
2. Select the tag set from the **Tag sets** dropdown and click **Save** to confirm.
|
||||
|
||||
:::tip NOTE
|
||||
If the tag set is missing from the dropdown, check that it has been created or configured correctly.
|
||||
:::
|
||||
:::tip NOTE
|
||||
If the tag set is missing from the dropdown, check that it has been created or configured correctly.
|
||||
:::
|
||||
|
||||
3. Re-parse your documents to start the auto-tagging process.
|
||||
_In an AI chat scenario using auto-tagged datasets, each query will be tagged using the corresponding tag set(s) and chunks with these tags will have a higher chance to be retrieved._
|
||||
|
||||
Reference in New Issue
Block a user