Move some functions out of 'api/utils/common.py' (#10948)

### What problem does this PR solve?

as title.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
This commit is contained in:
Jin Hai
2025-11-03 12:34:47 +08:00
committed by GitHub
parent 4117f41758
commit 78631a3fd3
7 changed files with 161 additions and 79 deletions

View File

@ -18,6 +18,11 @@ import base64
import hashlib
import uuid
import requests
import threading
import subprocess
import sys
import os
import logging
def get_uuid():
return uuid.uuid1().hex
@ -33,4 +38,71 @@ def download_img(url):
def hash_str2int(line: str, mod: int = 10 ** 8) -> int:
return int(hashlib.sha1(line.encode("utf-8")).hexdigest(), 16) % mod
return int(hashlib.sha1(line.encode("utf-8")).hexdigest(), 16) % mod
def convert_bytes(size_in_bytes: int) -> str:
"""
Format size in bytes.
"""
if size_in_bytes == 0:
return "0 B"
units = ['B', 'KB', 'MB', 'GB', 'TB', 'PB']
i = 0
size = float(size_in_bytes)
while size >= 1024 and i < len(units) - 1:
size /= 1024
i += 1
if i == 0 or size >= 100:
return f"{size:.0f} {units[i]}"
elif size >= 10:
return f"{size:.1f} {units[i]}"
else:
return f"{size:.2f} {units[i]}"
def once(func):
"""
A thread-safe decorator that ensures the decorated function runs exactly once,
caching and returning its result for all subsequent calls. This prevents
race conditions in multi-thread environments by using a lock to protect
the execution state.
Args:
func (callable): The function to be executed only once.
Returns:
callable: A wrapper function that executes `func` on the first call
and returns the cached result thereafter.
Example:
@once
def compute_expensive_value():
print("Computing...")
return 42
# First call: executes and prints
# Subsequent calls: return 42 without executing
"""
executed = False
result = None
lock = threading.Lock()
def wrapper(*args, **kwargs):
nonlocal executed, result
with lock:
if not executed:
executed = True
result = func(*args, **kwargs)
return result
return wrapper
@once
def pip_install_torch():
device = os.getenv("DEVICE", "cpu")
if device=="cpu":
return
logging.info("Installing pytorch")
pkg_names = ["torch>=2.5.0,<3.0.0"]
subprocess.check_call([sys.executable, "-m", "pip", "install", *pkg_names])