add support for Baidu yiyan (#2049)

### What problem does this PR solve?

add support for Baidu yiyan

### Type of change

- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾
2024-08-22 16:45:15 +08:00
committed by GitHub
parent 21f2c5838b
commit 733219cc3f
17 changed files with 307 additions and 13 deletions

View File

@ -43,7 +43,8 @@ EmbeddingModel = {
"PerfXCloud": PerfXCloudEmbed,
"Upstage": UpstageEmbed,
"SILICONFLOW": SILICONFLOWEmbed,
"Replicate": ReplicateEmbed
"Replicate": ReplicateEmbed,
"BaiduYiyan": BaiduYiyanEmbed
}
@ -101,7 +102,8 @@ ChatModel = {
"01.AI": YiChat,
"Replicate": ReplicateChat,
"Tencent Hunyuan": HunyuanChat,
"XunFei Spark": SparkChat
"XunFei Spark": SparkChat,
"BaiduYiyan": BaiduYiyanChat
}
@ -115,7 +117,8 @@ RerankModel = {
"OpenAI-API-Compatible": OpenAI_APIRerank,
"cohere": CoHereRerank,
"TogetherAI": TogetherAIRerank,
"SILICONFLOW": SILICONFLOWRerank
"SILICONFLOW": SILICONFLOWRerank,
"BaiduYiyan": BaiduYiyanRerank
}

View File

@ -1185,3 +1185,69 @@ class SparkChat(Base):
}
model_version = model2version[model_name]
super().__init__(key, model_version, base_url)
class BaiduYiyanChat(Base):
def __init__(self, key, model_name, base_url=None):
import qianfan
key = json.loads(key)
ak = key.get("yiyan_ak","")
sk = key.get("yiyan_sk","")
self.client = qianfan.ChatCompletion(ak=ak,sk=sk)
self.model_name = model_name.lower()
self.system = ""
def chat(self, system, history, gen_conf):
if system:
self.system = system
gen_conf["penalty_score"] = (
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2
) + 1
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
ans = ""
try:
response = self.client.do(
model=self.model_name,
messages=history,
system=self.system,
**gen_conf
).body
ans = response['result']
return ans, response["usage"]["total_tokens"]
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
self.system = system
gen_conf["penalty_score"] = (
(gen_conf.get("presence_penalty", 0) + gen_conf.get("frequency_penalty", 0)) / 2
) + 1
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
ans = ""
total_tokens = 0
try:
response = self.client.do(
model=self.model_name,
messages=history,
system=self.system,
stream=True,
**gen_conf
)
for resp in response:
resp = resp.body
ans += resp['result']
total_tokens = resp["usage"]["total_tokens"]
yield ans
except Exception as e:
return ans + "\n**ERROR**: " + str(e), 0
yield total_tokens

View File

@ -32,6 +32,7 @@ import asyncio
from api.utils.file_utils import get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate
import google.generativeai as genai
import json
class Base(ABC):
def __init__(self, key, model_name):
@ -591,11 +592,34 @@ class ReplicateEmbed(Base):
self.client = Client(api_token=key)
def encode(self, texts: list, batch_size=32):
from json import dumps
res = self.client.run(self.model_name, input={"texts": dumps(texts)})
res = self.client.run(self.model_name, input={"texts": json.dumps(texts)})
return np.array(res), sum([num_tokens_from_string(text) for text in texts])
def encode_queries(self, text):
res = self.client.embed(self.model_name, input={"texts": [text]})
return np.array(res), num_tokens_from_string(text)
class BaiduYiyanEmbed(Base):
def __init__(self, key, model_name, base_url=None):
import qianfan
key = json.loads(key)
ak = key.get("yiyan_ak", "")
sk = key.get("yiyan_sk", "")
self.client = qianfan.Embedding(ak=ak, sk=sk)
self.model_name = model_name
def encode(self, texts: list, batch_size=32):
res = self.client.do(model=self.model_name, texts=texts).body
return (
np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
)
def encode_queries(self, text):
res = self.client.do(model=self.model_name, texts=[text]).body
return (
np.array([r["embedding"] for r in res["data"]]),
res["usage"]["total_tokens"],
)

View File

@ -24,6 +24,7 @@ from abc import ABC
import numpy as np
from api.utils.file_utils import get_home_cache_dir
from rag.utils import num_tokens_from_string, truncate
import json
def sigmoid(x):
return 1 / (1 + np.exp(-x))
@ -288,3 +289,25 @@ class SILICONFLOWRerank(Base):
rank[indexs],
response["meta"]["tokens"]["input_tokens"] + response["meta"]["tokens"]["output_tokens"],
)
class BaiduYiyanRerank(Base):
def __init__(self, key, model_name, base_url=None):
from qianfan.resources import Reranker
key = json.loads(key)
ak = key.get("yiyan_ak", "")
sk = key.get("yiyan_sk", "")
self.client = Reranker(ak=ak, sk=sk)
self.model_name = model_name
def similarity(self, query: str, texts: list):
res = self.client.do(
model=self.model_name,
query=query,
documents=texts,
top_n=len(texts),
).body
rank = np.array([d["relevance_score"] for d in res["results"]])
indexs = [d["index"] for d in res["results"]]
return rank[indexs], res["usage"]["total_tokens"]