Don't release full image (#10654)

### What problem does this PR solve?

Introduced gpu profile in .env
Added Dockerfile_tei
fix datrie
Removed LIGHTEN flag

### Type of change

- [x] Documentation Update
- [x] Refactoring
This commit is contained in:
Zhichang Yu
2025-10-23 23:02:27 +08:00
committed by GitHub
parent 92739ea804
commit 73144e278b
67 changed files with 2792 additions and 3608 deletions

View File

@ -83,30 +83,17 @@ jobs:
password: ${{ secrets.DOCKERHUB_TOKEN }}
# https://github.com/marketplace/actions/build-and-push-docker-images
- name: Build and push full image
- name: Build and push image
uses: docker/build-push-action@v6
with:
context: .
push: true
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}
infiniflow/ragflow:latest-full
infiniflow/ragflow:latest
file: Dockerfile
platforms: linux/amd64
# https://github.com/marketplace/actions/build-and-push-docker-images
- name: Build and push slim image
uses: docker/build-push-action@v6
with:
context: .
push: true
tags: |
infiniflow/ragflow:${{ env.RELEASE_TAG }}-slim
infiniflow/ragflow:latest-slim
file: Dockerfile
build-args: LIGHTEN=1
platforms: linux/amd64
- name: Build ragflow-sdk
if: startsWith(github.ref, 'refs/tags/v')
run: |

View File

@ -49,20 +49,20 @@ jobs:
- name: Check workflow duplication
if: ${{ !cancelled() && !failure() && (github.event_name != 'pull_request' || contains(github.event.pull_request.labels.*.name, 'ci')) }}
run: |
if [[ ${{ github.event_name }} != 'pull_request' ]]; then
if [[ "$GITHUB_EVENT_NAME" != "pull_request" && "$GITHUB_EVENT_NAME" != "schedule" ]]; then
HEAD=$(git rev-parse HEAD)
# Find a PR that introduced a given commit
gh auth login --with-token <<< "${{ secrets.GITHUB_TOKEN }}"
PR_NUMBER=$(gh pr list --search ${HEAD} --state merged --json number --jq .[0].number)
echo "HEAD=${HEAD}"
echo "PR_NUMBER=${PR_NUMBER}"
if [[ -n ${PR_NUMBER} ]]; then
if [[ -n "${PR_NUMBER}" ]]; then
PR_SHA_FP=${RUNNER_WORKSPACE_PREFIX}/artifacts/${GITHUB_REPOSITORY}/PR_${PR_NUMBER}
if [[ -f ${PR_SHA_FP} ]]; then
if [[ -f "${PR_SHA_FP}" ]]; then
read -r PR_SHA PR_RUN_ID < "${PR_SHA_FP}"
# Calculate the hash of the current workspace content
HEAD_SHA=$(git rev-parse HEAD^{tree})
if [[ ${HEAD_SHA} == ${PR_SHA} ]]; then
if [[ "${HEAD_SHA}" == "${PR_SHA}" ]]; then
echo "Cancel myself since the workspace content hash is the same with PR #${PR_NUMBER} merged. See ${GITHUB_SERVER_URL}/${GITHUB_REPOSITORY}/actions/runs/${PR_RUN_ID} for details."
gh run cancel ${GITHUB_RUN_ID}
while true; do
@ -91,122 +91,98 @@ jobs:
version: ">=0.11.x"
args: "check"
- name: Build ragflow:nightly-slim
- name: Build ragflow:nightly
run: |
RUNNER_WORKSPACE_PREFIX=${RUNNER_WORKSPACE_PREFIX:-$HOME}
sudo docker pull ubuntu:22.04
sudo DOCKER_BUILDKIT=1 docker build --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
- name: Build ragflow:nightly
run: |
sudo DOCKER_BUILDKIT=1 docker build --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
- name: Start ragflow:nightly-slim
run: |
sudo docker compose -f docker/docker-compose.yml down --volumes --remove-orphans
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
- name: Stop ragflow:nightly-slim
if: always() # always run this step even if previous steps failed
run: |
sudo docker compose -f docker/docker-compose.yml down -v
if [[ "$GITHUB_EVENT_NAME" == "schedule" ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
echo "HTTP_API_TEST_LEVEL=${HTTP_API_TEST_LEVEL}" >> $GITHUB_ENV
echo "RAGFLOW_CONTAINER=${GITHUB_RUN_ID}-ragflow-cpu-1" >> $GITHUB_ENV
- name: Start ragflow:nightly
run: |
echo -e "\nCOMPOSE_PROFILES=\${COMPOSE_PROFILES},tei-cpu" >> docker/.env
echo -e "\nTEI_MODEL=BAAI/bge-small-en-v1.5" >> docker/.env
echo -e "\nRAGFLOW_IMAGE=infiniflow/ragflow:nightly" >> docker/.env
sudo docker compose -f docker/docker-compose.yml up -d
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} up -d
uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv pip install sdk/python
- name: Run sdk tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv pip install sdk/python && uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
source .venv/bin/activate && pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
- name: Run frontend api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && UV_LINK_MODE=copy uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
source .venv/bin/activate && pytest -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py
- name: Run http api tests against Elasticsearch
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
source .venv/bin/activate && pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed
run: |
sudo docker compose -f docker/docker-compose.yml down -v
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} down -v
- name: Start ragflow:nightly
run: |
sudo DOC_ENGINE=infinity docker compose -f docker/docker-compose.yml up -d
sed -i '1i DOC_ENGINE=infinity' docker/.env
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} up -d
- name: Run sdk tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && uv pip install sdk/python && DOC_ENGINE=infinity uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
source .venv/bin/activate && DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_sdk_api
- name: Run frontend api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
cd sdk/python && UV_LINK_MODE=copy uv sync --python 3.10 --group test --frozen && source .venv/bin/activate && cd test/test_frontend_api && pytest -s --tb=short get_email.py test_dataset.py
source .venv/bin/activate && DOC_ENGINE=infinity pytest -s --tb=short sdk/python/test/test_frontend_api/get_email.py sdk/python/test/test_frontend_api/test_dataset.py
- name: Run http api tests against Infinity
run: |
export http_proxy=""; export https_proxy=""; export no_proxy=""; export HTTP_PROXY=""; export HTTPS_PROXY=""; export NO_PROXY=""
export HOST_ADDRESS=http://host.docker.internal:9380
until sudo docker exec ragflow-server curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
until sudo docker exec ${RAGFLOW_CONTAINER} curl -s --connect-timeout 5 ${HOST_ADDRESS} > /dev/null; do
echo "Waiting for service to be available..."
sleep 5
done
if [[ $GITHUB_EVENT_NAME == 'schedule' ]]; then
export HTTP_API_TEST_LEVEL=p3
else
export HTTP_API_TEST_LEVEL=p2
fi
UV_LINK_MODE=copy uv sync --python 3.10 --only-group test --no-default-groups --frozen && DOC_ENGINE=infinity uv run --only-group test --no-default-groups pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
source .venv/bin/activate && DOC_ENGINE=infinity pytest -s --tb=short --level=${HTTP_API_TEST_LEVEL} test/testcases/test_http_api
- name: Stop ragflow:nightly
if: always() # always run this step even if previous steps failed
run: |
sudo DOC_ENGINE=infinity docker compose -f docker/docker-compose.yml down -v
sudo docker compose -f docker/docker-compose.yml -p ${GITHUB_RUN_ID} down -v

View File

@ -4,8 +4,6 @@ USER root
SHELL ["/bin/bash", "-c"]
ARG NEED_MIRROR=0
ARG LIGHTEN=0
ENV LIGHTEN=${LIGHTEN}
WORKDIR /ragflow
@ -17,13 +15,6 @@ RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co
/huggingface.co/InfiniFlow/text_concat_xgb_v1.0 \
/huggingface.co/InfiniFlow/deepdoc \
| tar -xf - --strip-components=3 -C /ragflow/rag/res/deepdoc
RUN --mount=type=bind,from=infiniflow/ragflow_deps:latest,source=/huggingface.co,target=/huggingface.co \
if [ "$LIGHTEN" != "1" ]; then \
(tar -cf - \
/huggingface.co/BAAI/bge-large-zh-v1.5 \
/huggingface.co/maidalun1020/bce-embedding-base_v1 \
| tar -xf - --strip-components=2 -C /root/.ragflow) \
fi
# https://github.com/chrismattmann/tika-python
# This is the only way to run python-tika without internet access. Without this set, the default is to check the tika version and pull latest every time from Apache.
@ -63,11 +54,11 @@ RUN --mount=type=cache,id=ragflow_apt,target=/var/cache/apt,sharing=locked \
apt install -y ghostscript
RUN if [ "$NEED_MIRROR" == "1" ]; then \
pip3 config set global.index-url https://mirrors.aliyun.com/pypi/simple && \
pip3 config set global.trusted-host mirrors.aliyun.com; \
pip3 config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple && \
pip3 config set global.trusted-host pypi.tuna.tsinghua.edu.cn; \
mkdir -p /etc/uv && \
echo "[[index]]" > /etc/uv/uv.toml && \
echo 'url = "https://mirrors.aliyun.com/pypi/simple"' >> /etc/uv/uv.toml && \
echo 'url = "https://pypi.tuna.tsinghua.edu.cn/simple"' >> /etc/uv/uv.toml && \
echo "default = true" >> /etc/uv/uv.toml; \
fi; \
pipx install uv
@ -151,15 +142,11 @@ COPY pyproject.toml uv.lock ./
# uv records index url into uv.lock but doesn't failover among multiple indexes
RUN --mount=type=cache,id=ragflow_uv,target=/root/.cache/uv,sharing=locked \
if [ "$NEED_MIRROR" == "1" ]; then \
sed -i 's|pypi.org|mirrors.aliyun.com/pypi|g' uv.lock; \
sed -i 's|pypi.org|pypi.tuna.tsinghua.edu.cn|g' uv.lock; \
else \
sed -i 's|mirrors.aliyun.com/pypi|pypi.org|g' uv.lock; \
sed -i 's|pypi.tuna.tsinghua.edu.cn|pypi.org|g' uv.lock; \
fi; \
if [ "$LIGHTEN" == "1" ]; then \
uv sync --python 3.10 --frozen; \
else \
uv sync --python 3.10 --frozen --all-extras; \
fi
uv sync --python 3.10 --frozen
COPY web web
COPY docs docs
@ -169,11 +156,7 @@ RUN --mount=type=cache,id=ragflow_npm,target=/root/.npm,sharing=locked \
COPY .git /ragflow/.git
RUN version_info=$(git describe --tags --match=v* --first-parent --always); \
if [ "$LIGHTEN" == "1" ]; then \
version_info="$version_info slim"; \
else \
version_info="$version_info full"; \
fi; \
version_info="$version_info"; \
echo "RAGFlow version: $version_info"; \
echo $version_info > /ragflow/VERSION

14
Dockerfile_tei Normal file
View File

@ -0,0 +1,14 @@
FROM ghcr.io/huggingface/text-embeddings-inference:cpu-1.8
# uv tool install huggingface_hub
# hf download --local-dir tei_data/BAAI/bge-small-en-v1.5 BAAI/bge-small-en-v1.5
# hf download --local-dir tei_data/BAAI/bge-m3 BAAI/bge-m3
# hf download --local-dir tei_data/Qwen/Qwen3-Embedding-0.6B Qwen/Qwen3-Embedding-0.6B
COPY tei_data /data
# curl -X POST http://localhost:6380/embed -H "Content-Type: application/json" -d '{"inputs": "Hello, world! This is a test sentence."}'
# curl -X POST http://tei:80/embed -H "Content-Type: application/json" -d '{"inputs": "Hello, world! This is a test sentence."}'
# [[-0.058816575,0.019564206,0.026697718,...]]
# curl -X POST http://localhost:6380/v1/embeddings -H "Content-Type: application/json" -d '{"input": "Hello, world! This is a test sentence."}'
# {"object":"list","data":[{"object":"embedding","embedding":[-0.058816575,0.019564206,...],"index":0}],"model":"BAAI/bge-small-en-v1.5","usage":{"prompt_tokens":12,"total_tokens":12}}

View File

@ -187,7 +187,7 @@ releases! 🌟
> All Docker images are built for x86 platforms. We don't currently offer Docker images for ARM64.
> If you are on an ARM64 platform, follow [this guide](https://ragflow.io/docs/dev/build_docker_image) to build a Docker image compatible with your system.
> The command below downloads the `v0.21.1-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.21.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server. For example: set `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` for the full edition `v0.21.1`.
> The command below downloads the `v0.21.1-slim` edition of the RAGFlow Docker image. See the following table for descriptions of different RAGFlow editions. To download a RAGFlow edition different from `v0.21.1-slim`, update the `RAGFLOW_IMAGE` variable accordingly in **docker/.env** before using `docker compose` to start the server.
```bash
$ cd ragflow/docker
@ -195,20 +195,23 @@ releases! 🌟
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
|-------------------|-----------------|-----------------------|--------------------------|
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
> Note: Starting with `v0.22.0`, we ship only the slim edition and no longer append the **-slim** suffix to the image tag.
4. Check the server status after having the server up and running:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_The following output confirms a successful launch of the system:_
@ -286,16 +289,6 @@ RAGFlow uses Elasticsearch by default for storing full text and vectors. To swit
This image is approximately 2 GB in size and relies on external LLM and embedding services.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Build a Docker image including embedding models
This image is approximately 9 GB in size. As it includes embedding models, it relies on external LLM services only.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -315,7 +308,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -181,28 +181,28 @@ Coba demo kami di [https://demo.ragflow.io](https://demo.ragflow.io).
> Semua gambar Docker dibangun untuk platform x86. Saat ini, kami tidak menawarkan gambar Docker untuk ARM64.
> Jika Anda menggunakan platform ARM64, [silakan gunakan panduan ini untuk membangun gambar Docker yang kompatibel dengan sistem Anda](https://ragflow.io/docs/dev/build_docker_image).
> Perintah di bawah ini mengunduh edisi v0.21.1-slim dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.21.1-slim, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server. Misalnya, atur RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1 untuk edisi lengkap v0.21.1.
> Perintah di bawah ini mengunduh edisi v0.21.1 dari gambar Docker RAGFlow. Silakan merujuk ke tabel berikut untuk deskripsi berbagai edisi RAGFlow. Untuk mengunduh edisi RAGFlow yang berbeda dari v0.21.1, perbarui variabel RAGFLOW_IMAGE di docker/.env sebelum menggunakan docker compose untuk memulai server.
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
```bash
$ cd ragflow/docker
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
# To use GPU to accelerate embedding and DeepDoc tasks:
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
1. Periksa status server setelah server aktif dan berjalan:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_Output berikut menandakan bahwa sistem berhasil diluncurkan:_
@ -253,16 +253,6 @@ Pembaruan konfigurasi ini memerlukan reboot semua kontainer agar efektif:
Image ini berukuran sekitar 2 GB dan bergantung pada aplikasi LLM eksternal dan embedding.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Membangun Docker Image Termasuk Model Embedding
Image ini berukuran sekitar 9 GB. Karena sudah termasuk model embedding, ia hanya bergantung pada aplikasi LLM eksternal.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -282,7 +272,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -160,7 +160,7 @@
> 現在、公式に提供されているすべての Docker イメージは x86 アーキテクチャ向けにビルドされており、ARM64 用の Docker イメージは提供されていません。
> ARM64 アーキテクチャのオペレーティングシステムを使用している場合は、[このドキュメント](https://ragflow.io/docs/dev/build_docker_image)を参照して Docker イメージを自分でビルドしてください。
> 以下のコマンドは、RAGFlow Docker イメージの v0.21.1-slim エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.21.1-slim とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。例えば、完全版 v0.21.1 をダウンロードするには、RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1 と設定します。
> 以下のコマンドは、RAGFlow Docker イメージの v0.21.1 エディションをダウンロードします。異なる RAGFlow エディションの説明については、以下の表を参照してください。v0.21.1 とは異なるエディションをダウンロードするには、docker/.env ファイルの RAGFLOW_IMAGE 変数を適宜更新し、docker compose を使用してサーバーを起動してください。
```bash
$ cd ragflow/docker
@ -168,20 +168,20 @@
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
1. サーバーを立ち上げた後、サーバーの状態を確認する:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_以下の出力は、システムが正常に起動したことを確認するものです:_
@ -248,16 +248,6 @@ RAGFlow はデフォルトで Elasticsearch を使用して全文とベクトル
この Docker イメージのサイズは約 1GB で、外部の大モデルと埋め込みサービスに依存しています。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 ソースコードをコンパイルした Docker イメージ(埋め込みモデルを含む)
この Docker のサイズは約 9GB で、埋め込みモデルを含むため、外部の大モデルサービスのみが必要です。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -277,7 +267,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -160,7 +160,7 @@
> 모든 Docker 이미지는 x86 플랫폼을 위해 빌드되었습니다. 우리는 현재 ARM64 플랫폼을 위한 Docker 이미지를 제공하지 않습니다.
> ARM64 플랫폼을 사용 중이라면, [시스템과 호환되는 Docker 이미지를 빌드하려면 이 가이드를 사용해 주세요](https://ragflow.io/docs/dev/build_docker_image).
> 아래 명령어는 RAGFlow Docker 이미지의 v0.21.1-slim 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.21.1-slim과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오. 예를 들어, 전체 버전인 v0.21.1을 다운로드하려면 RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1로 설정합니다.
> 아래 명령어는 RAGFlow Docker 이미지의 v0.21.1 버전을 다운로드합니다. 다양한 RAGFlow 버전에 대한 설명은 다음 표를 참조하십시오. v0.21.1과 다른 RAGFlow 버전을 다운로드하려면, docker/.env 파일에서 RAGFLOW_IMAGE 변수를 적절히 업데이트한 후 docker compose를 사용하여 서버를 시작하십시오.
```bash
$ cd ragflow/docker
@ -168,20 +168,20 @@
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
1. 서버가 시작된 후 서버 상태를 확인하세요:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_다음 출력 결과로 시스템이 성공적으로 시작되었음을 확인합니다:_
@ -247,16 +247,6 @@ RAGFlow 는 기본적으로 Elasticsearch 를 사용하여 전체 텍스트 및
이 Docker 이미지의 크기는 약 1GB이며, 외부 대형 모델과 임베딩 서비스에 의존합니다.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 소스 코드로 Docker 이미지를 컴파일합니다(임베딩 모델 포함)
이 Docker의 크기는 약 9GB이며, 이미 임베딩 모델을 포함하고 있으므로 외부 대형 모델 서비스에만 의존하면 됩니다.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -276,7 +266,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -180,7 +180,7 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
> Todas as imagens Docker são construídas para plataformas x86. Atualmente, não oferecemos imagens Docker para ARM64.
> Se você estiver usando uma plataforma ARM64, por favor, utilize [este guia](https://ragflow.io/docs/dev/build_docker_image) para construir uma imagem Docker compatível com o seu sistema.
> O comando abaixo baixa a edição `v0.21.1-slim` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.21.1-slim`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor. Por exemplo: defina `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` para a edição completa `v0.21.1`.
> O comando abaixo baixa a edição `v0.21.1` da imagem Docker do RAGFlow. Consulte a tabela a seguir para descrições de diferentes edições do RAGFlow. Para baixar uma edição do RAGFlow diferente da `v0.21.1`, atualize a variável `RAGFLOW_IMAGE` conforme necessário no **docker/.env** antes de usar `docker compose` para iniciar o servidor.
```bash
$ cd ragflow/docker
@ -188,20 +188,20 @@ Experimente nossa demo em [https://demo.ragflow.io](https://demo.ragflow.io).
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| Tag da imagem RAGFlow | Tamanho da imagem (GB) | Possui modelos de incorporação? | Estável? |
| --------------------- | ---------------------- | ------------------------------- | ------------------------ |
| v0.21.1 | ~9 | :heavy_check_mark: | Lançamento estável |
| v0.21.1-slim | ~2 | ❌ | Lançamento estável |
| nightly | ~9 | :heavy_check_mark: | _Instável_ build noturno |
| nightly-slim | ~2 | ❌ | _Instável_ build noturno |
| --------------------- | ---------------------- | ------------------------------- | --------------------------- |
| v0.21.1 | &approx;9 | ✔️ | Lançamento estável |
| v0.21.1-slim | &approx;2 | ❌ | Lançamento estável |
| nightly | &approx;2 | ❌ | Construção noturna instável |
4. Verifique o status do servidor após tê-lo iniciado:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_O seguinte resultado confirma o lançamento bem-sucedido do sistema:_
@ -271,16 +271,6 @@ O RAGFlow usa o Elasticsearch por padrão para armazenar texto completo e vetore
Esta imagem tem cerca de 2 GB de tamanho e depende de serviços externos de LLM e incorporação.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 Criar uma imagem Docker incluindo modelos de incorporação
Esta imagem tem cerca de 9 GB de tamanho. Como inclui modelos de incorporação, depende apenas de serviços externos de LLM.
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -300,7 +290,7 @@ docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # instala os módulos Python dependentes do RAGFlow
uv sync --python 3.10 # instala os módulos Python dependentes do RAGFlow
uv run download_deps.py
pre-commit install
```

View File

@ -183,7 +183,7 @@
> 所有 Docker 映像檔都是為 x86 平台建置的。目前,我們不提供 ARM64 平台的 Docker 映像檔。
> 如果您使用的是 ARM64 平台,請使用 [這份指南](https://ragflow.io/docs/dev/build_docker_image) 來建置適合您系統的 Docker 映像檔。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.21.1-slim`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.21.1-slim` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。例如,你可以透過設定 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` 來下載 RAGFlow 鏡像的 `v0.21.1` 完整發行版。
> 執行以下指令會自動下載 RAGFlow slim Docker 映像 `v0.21.1`。請參考下表查看不同 Docker 發行版的說明。如需下載不同於 `v0.21.1` 的 Docker 映像,請在執行 `docker compose` 啟動服務之前先更新 **docker/.env** 檔案內的 `RAGFLOW_IMAGE` 變數。
```bash
$ cd ragflow/docker
@ -191,15 +191,15 @@
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 映像檔拉不下來的問題,可以在 **docker/.env** 檔案內根據變數 `RAGFLOW_IMAGE` 的註解提示選擇華為雲或阿里雲的對應映像。
@ -210,7 +210,7 @@
4. 伺服器啟動成功後再次確認伺服器狀態:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_出現以下介面提示說明伺服器啟動成功_
@ -286,17 +286,7 @@ RAGFlow 預設使用 Elasticsearch 儲存文字和向量資料. 如果要切換
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 原始碼編譯 Docker 映像(包含 embedding 模型)
本 Docker 大小約 9 GB 左右。由於已包含 embedding 模型,所以只需依賴外部的大模型服務即可。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以原始碼啟動服務
@ -313,7 +303,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -183,7 +183,7 @@
> 请注意,目前官方提供的所有 Docker 镜像均基于 x86 架构构建,并不提供基于 ARM64 的 Docker 镜像。
> 如果你的操作系统是 ARM64 架构,请参考[这篇文档](https://ragflow.io/docs/dev/build_docker_image)自行构建 Docker 镜像。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.21.1-slim`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.21.1-slim` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。比如,你可以通过设置 `RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1` 来下载 RAGFlow 镜像的 `v0.21.1` 完整发行版。
> 运行以下命令会自动下载 RAGFlow slim Docker 镜像 `v0.21.1`。请参考下表查看不同 Docker 发行版的描述。如需下载不同于 `v0.21.1` 的 Docker 镜像,请在运行 `docker compose` 启动服务之前先更新 **docker/.env** 文件内的 `RAGFLOW_IMAGE` 变量。
```bash
$ cd ragflow/docker
@ -191,15 +191,15 @@
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
# sed -i '1i DEVICE=gpu' .env
# docker compose -f docker-compose.yml up -d
```
| RAGFlow image tag | Image size (GB) | Has embedding models? | Stable? |
| ----------------- | --------------- | --------------------- | ------------------------ |
| v0.21.1 | &approx;9 | :heavy_check_mark: | Stable release |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;9 | :heavy_check_mark: | _Unstable_ nightly build |
| nightly-slim | &approx;2 | ❌ | _Unstable_ nightly build |
| nightly | &approx;2 | | _Unstable_ nightly build |
> [!TIP]
> 如果你遇到 Docker 镜像拉不下来的问题,可以在 **docker/.env** 文件内根据变量 `RAGFLOW_IMAGE` 的注释提示选择华为云或者阿里云的相应镜像。
@ -210,7 +210,7 @@
4. 服务器启动成功后再次确认服务器状态:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_出现以下界面提示说明服务器启动成功_
@ -286,17 +286,7 @@ RAGFlow 默认使用 Elasticsearch 存储文本和向量数据. 如果要切换
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg LIGHTEN=1 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
## 🔧 源码编译 Docker 镜像(包含 embedding 模型)
本 Docker 大小约 9 GB 左右。由于已包含 embedding 模型,所以只需依赖外部的大模型服务即可。
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t infiniflow/ragflow:nightly .
docker build --platform linux/amd64 -f Dockerfile -t infiniflow/ragflow:nightly .
```
## 🔨 以源代码启动服务
@ -313,7 +303,7 @@ docker build --platform linux/amd64 --build-arg NEED_MIRROR=1 -f Dockerfile -t i
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
uv run download_deps.py
pre-commit install
```

View File

@ -15,11 +15,11 @@
#
import logging
import json
import os
from flask import request
from flask_login import login_required, current_user
from api.db.services.tenant_llm_service import LLMFactoriesService, TenantLLMService
from api.db.services.llm_service import LLMService
from api import settings
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db import StatusEnum, LLMType
from api.db.db_models import TenantLLM
@ -369,7 +369,7 @@ def my_llms():
@login_required
def list_app():
self_deployed = ["Youdao", "FastEmbed", "BAAI", "Ollama", "Xinference", "LocalAI", "LM-Studio", "GPUStack"]
weighted = ["Youdao", "FastEmbed", "BAAI"] if settings.LIGHTEN != 0 else []
weighted = []
model_type = request.args.get("model_type")
try:
objs = TenantLLMService.query(tenant_id=current_user.id)
@ -379,6 +379,8 @@ def list_app():
for m in llms if m.status == StatusEnum.VALID.value and m.fid not in weighted]
for m in llms:
m["available"] = m["fid"] in facts or m["llm_name"].lower() == "flag-embedding" or m["fid"] in self_deployed
if "tei-" in os.getenv("COMPOSE_PROFILES", "") and m["model_type"]==LLMType.EMBEDDING and m["fid"]=="Builtin" and m["llm_name"]==os.getenv('TEI_MODEL', ''):
m["available"] = True
llm_set = set([m["llm_name"] + "@" + m["fid"] for m in llms])
for o in objs:

View File

@ -59,21 +59,6 @@ def get_init_tenant_llm(user_id):
}
)
if settings.LIGHTEN != 1:
for buildin_embedding_model in settings.BUILTIN_EMBEDDING_MODELS:
mdlnm, fid = TenantLLMService.split_model_name_and_factory(buildin_embedding_model)
tenant_llm.append(
{
"tenant_id": user_id,
"llm_factory": fid,
"llm_name": mdlnm,
"model_type": "embedding",
"api_key": "",
"api_base": "",
"max_tokens": 1024 if buildin_embedding_model == "BAAI/bge-large-zh-v1.5@BAAI" else 512,
}
)
unique = {}
for item in tenant_llm:
key = (item["tenant_id"], item["llm_factory"], item["llm_name"])

View File

@ -13,6 +13,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import logging
from langfuse import Langfuse
from api import settings
@ -112,24 +113,17 @@ class TenantLLMService(CommonService):
model_config = cls.get_api_key(tenant_id, mdlnm)
if model_config:
model_config = model_config.to_dict()
elif llm_type == LLMType.EMBEDDING and fid == 'Builtin' and "tei-" in os.getenv("COMPOSE_PROFILES", "") and mdlnm == os.getenv('TEI_MODEL', ''):
embedding_cfg = settings.EMBEDDING_CFG
model_config = {"llm_factory": 'Builtin', "api_key": embedding_cfg["api_key"], "llm_name": mdlnm, "api_base": embedding_cfg["base_url"]}
else:
raise LookupError(f"Model({mdlnm}@{fid}) not authorized")
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if not llm and fid: # for some cases seems fid mismatch
llm = LLMService.query(llm_name=mdlnm)
if llm:
model_config["is_tools"] = llm[0].is_tools
if not model_config:
if llm_type in [LLMType.EMBEDDING, LLMType.RERANK]:
llm = LLMService.query(llm_name=mdlnm) if not fid else LLMService.query(llm_name=mdlnm, fid=fid)
if llm and llm[0].fid in ["Youdao", "FastEmbed", "BAAI"]:
model_config = {"llm_factory": llm[0].fid, "api_key": "", "llm_name": mdlnm, "api_base": ""}
if not model_config:
if mdlnm == "flag-embedding":
model_config = {"llm_factory": "Tongyi-Qianwen", "api_key": "", "llm_name": llm_name,
"api_base": ""}
else:
if not mdlnm:
raise LookupError(f"Type of {llm_type} model is not set.")
raise LookupError("Model({}) not authorized".format(mdlnm))
return model_config
@classmethod

View File

@ -28,8 +28,6 @@ from api.utils.configs import decrypt_database_config, get_base_config
from api.utils.file_utils import get_project_base_directory
from rag.nlp import search
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
LLM = None
LLM_FACTORY = None
LLM_BASE_URL = None
@ -77,8 +75,6 @@ SANDBOX_ENABLED = 0
SANDBOX_HOST = None
STRONG_TEST_COUNT = int(os.environ.get("STRONG_TEST_COUNT", "8"))
BUILTIN_EMBEDDING_MODELS = ["BAAI/bge-large-zh-v1.5@BAAI", "maidalun1020/bce-embedding-base_v1@Youdao"]
SMTP_CONF = None
MAIL_SERVER = ""
MAIL_PORT = 000
@ -109,8 +105,7 @@ def get_or_create_secret_key():
def init_settings():
global LLM, LLM_FACTORY, LLM_BASE_URL, LIGHTEN, DATABASE_TYPE, DATABASE, FACTORY_LLM_INFOS, REGISTER_ENABLED
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
global LLM, LLM_FACTORY, LLM_BASE_URL, DATABASE_TYPE, DATABASE, FACTORY_LLM_INFOS, REGISTER_ENABLED
DATABASE_TYPE = os.getenv("DB_TYPE", "mysql")
DATABASE = decrypt_database_config(name=DATABASE_TYPE)
LLM = get_base_config("user_default_llm", {}) or {}
@ -130,8 +125,6 @@ def init_settings():
global CHAT_MDL, EMBEDDING_MDL, RERANK_MDL, ASR_MDL, IMAGE2TEXT_MDL
global CHAT_CFG, EMBEDDING_CFG, RERANK_CFG, ASR_CFG, IMAGE2TEXT_CFG
if not LIGHTEN:
EMBEDDING_MDL = BUILTIN_EMBEDDING_MODELS[0]
global API_KEY, PARSERS, HOST_IP, HOST_PORT, SECRET_KEY
API_KEY = LLM.get("api_key")
@ -152,7 +145,7 @@ def init_settings():
IMAGE2TEXT_CFG = _resolve_per_model_config(image2text_entry, LLM_FACTORY, API_KEY, LLM_BASE_URL)
CHAT_MDL = CHAT_CFG.get("model", "") or ""
EMBEDDING_MDL = EMBEDDING_CFG.get("model", "") or ""
EMBEDDING_MDL = os.getenv("TEI_MODEL", "BAAI/bge-small-en-v1.5") if "tei-" in os.getenv("COMPOSE_PROFILES", "") else ""
RERANK_MDL = RERANK_CFG.get("model", "") or ""
ASR_MDL = ASR_CFG.get("model", "") or ""
IMAGE2TEXT_MDL = IMAGE2TEXT_CFG.get("model", "") or ""

View File

@ -588,7 +588,7 @@ def verify_embedding_availability(embd_id: str, tenant_id: str) -> tuple[bool, R
llm["llm_name"] == llm_name and llm["llm_factory"] == llm_factory and llm["model_type"] == "embedding" for
llm in tenant_llms)
is_builtin_model = embd_id in settings.BUILTIN_EMBEDDING_MODELS
is_builtin_model = llm_factory=='Builtin'
if not (is_builtin_model or is_tenant_model or in_llm_service):
return False, get_error_argument_result(f"Unsupported model: <{embd_id}>")

View File

@ -14,6 +14,12 @@
# limitations under the License.
#
import threading
import subprocess
import sys
import os
import logging
def string_to_bytes(string):
return string if isinstance(
string, bytes) else string.encode(encoding="utf-8")
@ -44,3 +50,48 @@ def convert_bytes(size_in_bytes: int) -> str:
return f"{size:.1f} {units[i]}"
else:
return f"{size:.2f} {units[i]}"
def once(func):
"""
A thread-safe decorator that ensures the decorated function runs exactly once,
caching and returning its result for all subsequent calls. This prevents
race conditions in multi-threaded environments by using a lock to protect
the execution state.
Args:
func (callable): The function to be executed only once.
Returns:
callable: A wrapper function that executes `func` on the first call
and returns the cached result thereafter.
Example:
@once
def compute_expensive_value():
print("Computing...")
return 42
# First call: executes and prints
# Subsequent calls: return 42 without executing
"""
executed = False
result = None
lock = threading.Lock()
def wrapper(*args, **kwargs):
nonlocal executed, result
with lock:
if not executed:
executed = True
result = func(*args, **kwargs)
return result
return wrapper
@once
def pip_install_torch():
device = os.getenv("DEVICE", "cpu")
if device=="cpu":
return
logging.info("Installing pytorch")
pkg_names = ["torch>=2.5.0,<3.0.0"]
subprocess.check_call([sys.executable, "-m", "pip", "install", *pkg_names])

View File

@ -34,8 +34,6 @@ def get_ragflow_version() -> str:
RAGFLOW_VERSION_INFO = f.read().strip()
else:
RAGFLOW_VERSION_INFO = get_closest_tag_and_count()
LIGHTEN = int(os.environ.get("LIGHTEN", "0"))
RAGFLOW_VERSION_INFO += " slim" if LIGHTEN == 1 else " full"
return RAGFLOW_VERSION_INFO

View File

@ -1112,6 +1112,32 @@
}
]
},
{
"name": "Builtin",
"logo": "",
"tags": "TEXT EMBEDDING",
"status": "1",
"llm": [
{
"llm_name": "BAAI/bge-small-en-v1.5",
"tags": "TEXT EMBEDDING,512",
"max_tokens": 512,
"model_type": "embedding"
},
{
"llm_name": "BAAI/bge-m3",
"tags": "TEXT EMBEDDING,8k",
"max_tokens": 8192,
"model_type": "embedding"
},
{
"llm_name": "Qwen/Qwen3-Embedding-0.6B",
"tags": "TEXT EMBEDDING,32k",
"max_tokens": 32768,
"model_type": "embedding"
}
]
},
{
"name": "MiniMax",
"logo": "",

View File

@ -32,6 +32,11 @@ redis:
db: 1
password: 'infini_rag_flow'
host: 'localhost:6379'
user_default_llm:
default_models:
embedding_model:
api_key: 'xxx'
base_url: 'http://localhost:6380'
# postgres:
# name: 'rag_flow'
# user: 'rag_flow'
@ -77,7 +82,8 @@ redis:
# api_key: 'xxxx'
# base_url: 'https://api.xx.com'
# embedding_model:
# name: 'bge-m3'
# api_key: 'xxx'
# base_url: 'http://localhost:6380'
# rerank_model: 'bge-reranker-v2'
# asr_model:
# model: 'whisper-large-v3' # alias of name

View File

@ -34,8 +34,8 @@ from huggingface_hub import snapshot_download
from PIL import Image
from pypdf import PdfReader as pdf2_read
from api import settings
from api.utils.file_utils import get_project_base_directory
from api.utils.common import pip_install_torch
from deepdoc.vision import OCR, AscendLayoutRecognizer, LayoutRecognizer, Recognizer, TableStructureRecognizer
from rag.app.picture import vision_llm_chunk as picture_vision_llm_chunk
from rag.nlp import rag_tokenizer
@ -84,10 +84,9 @@ class RAGFlowPdfParser:
self.tbl_det = TableStructureRecognizer()
self.updown_cnt_mdl = xgb.Booster()
if not settings.LIGHTEN:
try:
pip_install_torch()
import torch.cuda
if torch.cuda.is_available():
self.updown_cnt_mdl.set_param({"device": "cuda"})
except Exception:

View File

@ -22,6 +22,7 @@ import os
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from api.utils.common import pip_install_torch
from rag.settings import PARALLEL_DEVICES
from .operators import * # noqa: F403
from . import operators
@ -83,6 +84,7 @@ def load_model(model_dir, nm, device_id: int | None = None):
def cuda_is_available():
try:
pip_install_torch()
import torch
target_id = 0 if device_id is None else device_id
if torch.cuda.is_available() and torch.cuda.device_count() > target_id:

View File

@ -1,3 +1,8 @@
# ------------------------------
# docker env var for specifying vector db type at startup
# (based on the vector db type, the corresponding docker
# compose profile will be used)
# ------------------------------
# The type of doc engine to use.
# Available options:
# - `elasticsearch` (default)
@ -5,12 +10,13 @@
# - `opensearch` (https://github.com/opensearch-project/OpenSearch)
DOC_ENGINE=${DOC_ENGINE:-elasticsearch}
# ------------------------------
# docker env var for specifying vector db type at startup
# (based on the vector db type, the corresponding docker
# compose profile will be used)
# ------------------------------
COMPOSE_PROFILES=${DOC_ENGINE}
# Device on which deepdoc inference run.
# Available levels:
# - `cpu` (default)
# - `gpu`
DEVICE=${DEVICE:-cpu}
COMPOSE_PROFILES=${DOC_ENGINE},${DEVICE}
# The version of Elasticsearch.
STACK_VERSION=8.11.3
@ -38,7 +44,7 @@ OPENSEARCH_PASSWORD=infini_rag_flow_OS_01
# The port used to expose the Kibana service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
# To enable kibana, you need to:
# 1. Ensure that COMPOSE_PROFILES includes kibana, for example: COMPOSE_PROFILES=${DOC_ENGINE},kibana
# 1. Ensure that COMPOSE_PROFILES includes kibana, for example: COMPOSE_PROFILES=${COMPOSE_PROFILES},kibana
# 2. Comment out or delete the following configurations of the es service in docker-compose-base.yml: xpack.security.enabled、xpack.security.http.ssl.enabled、xpack.security.transport.ssl.enabled (for details: https://www.elastic.co/docs/deploy-manage/security/self-auto-setup#stack-existing-settings-detected)
# 3. Adjust the es.hosts in conf/service_config.yaml or docker/service_conf.yaml.template to 'https://localhost:1200'
# 4. After the startup is successful, in the es container, execute the command to generate the kibana token: `bin/elasticsearch-create-enrollment-token -s kibana`, then you can use kibana normally
@ -96,30 +102,47 @@ REDIS_PASSWORD=infini_rag_flow
SVR_HTTP_PORT=9380
ADMIN_SVR_HTTP_PORT=9381
# The RAGFlow Docker image to download.
# The RAGFlow Docker image to download. v0.22+ doesn't include embedding models.
# Defaults to the v0.21.1-slim edition, which is the RAGFlow Docker image without embedding models.
RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1-slim
#
# To download the RAGFlow Docker image with embedding models, uncomment the following line instead:
# RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1
#
# The Docker image of the v0.21.1 edition includes built-in embedding models:
# - BAAI/bge-large-zh-v1.5
# - maidalun1020/bce-embedding-base_v1
#
# If you cannot download the RAGFlow Docker image:
#
# - For the `nightly-slim` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly-slim
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly-slim
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:v0.21.1
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:v0.21.1
#
# - For the `nightly` edition, uncomment either of the following:
# RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly
# RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly
# The embedding service image, model and port.
# Important: To enable the embedding service, you need to uncomment one of the following two lines:
# COMPOSE_PROFILES=${COMPOSE_PROFILES},tei-cpu
# COMPOSE_PROFILES=${COMPOSE_PROFILES},tei-gpu
# The embedding service image:
TEI_IMAGE_CPU=infiniflow/text-embeddings-inference:cpu-1.8
TEI_IMAGE_GPU=infiniflow/text-embeddings-inference:1.8
# The embedding service model:
# Available options:
# - `Qwen/Qwen3-Embedding-0.6B` (default, requires 25GB RAM/vRAM to load)
# - `BAAI/bge-m3` (requires 21GB RAM/vRAM to load)
# - `BAAI/bge-small-en-v1.5` (requires 1.2GB RAM/vRAM to load)
TEI_MODEL=${TEI_MODEL:-Qwen/Qwen3-Embedding-0.6B}
# The embedding service port:
TEI_HOST=tei
# The port used to expose the TEI service to the host machine,
# allowing EXTERNAL access to the service running inside the Docker container.
TEI_PORT=6380
# The local time zone.
TIMEZONE=Asia/Shanghai
TZ=Asia/Shanghai
# Uncomment the following line if you have limited access to huggingface.co:
# HF_ENDPOINT=https://hf-mirror.com
@ -165,8 +188,11 @@ EMBEDDING_BATCH_SIZE=${EMBEDDING_BATCH_SIZE:-16}
# - Disable registration: 0
REGISTER_ENABLED=1
# Important: To enable sandbox, you need to uncomment following two lines:
# SANDBOX_ENABLED=1
# COMPOSE_PROFILES=${COMPOSE_PROFILES},sandbox
# Sandbox settings
# Important: To enable sandbox, you must re-declare the compose profiles. See hints at the end of file.
# Double check if you add `sandbox-executor-manager` to your `/etc/hosts`
# Pull the required base images before running:
# docker pull infiniflow/sandbox-base-nodejs:latest
@ -175,7 +201,6 @@ REGISTER_ENABLED=1
# - Node.js base image: includes axios
# - Python base image: includes requests, numpy, and pandas
# Specify custom executor images below if you're using non-default environments.
# SANDBOX_ENABLED=1
# SANDBOX_HOST=sandbox-executor-manager
# SANDBOX_EXECUTOR_MANAGER_IMAGE=infiniflow/sandbox-executor-manager:latest
# SANDBOX_EXECUTOR_MANAGER_POOL_SIZE=3

View File

@ -18,7 +18,7 @@
Sets up environment for RAGFlow's dependencies: Elasticsearch/[Infinity](https://github.com/infiniflow/infinity), MySQL, MinIO, and Redis.
> [!CAUTION]
> We do not actively maintain **docker-compose-CN-oc9.yml**, **docker-compose-gpu-CN-oc9.yml**, or **docker-compose-gpu.yml**, so use them at your own risk. However, you are welcome to file a pull request to improve any of them.
> We do not actively maintain **docker-compose-CN-oc9.yml**, **docker-compose-macos.yml**, so use them at your own risk. However, you are welcome to file a pull request to improve any of them.
## 🐬 Docker environment variables
@ -89,16 +89,13 @@ The [.env](./.env) file contains important environment variables for Docker.
> [!TIP]
> If you cannot download the RAGFlow Docker image, try the following mirrors.
>
> - For the `nightly-slim` edition:
> - `RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly-slim` or,
> - `RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly-slim`.
> - For the `nightly` edition:
> - `RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly` or,
> - `RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly`.
### Timezone
- `TIMEZONE`
- `TZ`
The local time zone. Defaults to `'Asia/Shanghai'`.
### Hugging Face mirror site

View File

@ -4,12 +4,13 @@ include:
- ./docker-compose-base.yml
services:
ragflow:
ragflow-cpu:
depends_on:
mysql:
condition: service_healthy
profiles:
- cpu
image: edwardelric233/ragflow:oc9
container_name: ragflow-server
ports:
- ${SVR_HTTP_PORT}:9380
- 80:80
@ -20,10 +21,6 @@ services:
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
env_file: .env
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=${HF_ENDPOINT}
- MACOS=${MACOS}
networks:
- ragflow
restart: on-failure
@ -31,3 +28,35 @@ services:
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
extra_hosts:
- "host.docker.internal:host-gateway"
ragflow-gpu:
depends_on:
mysql:
condition: service_healthy
profiles:
- gpu
image: edwardelric233/ragflow:oc9
ports:
- ${SVR_HTTP_PORT}:9380
- 80:80
- 443:443
volumes:
- ./ragflow-logs:/ragflow/logs
- ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
env_file: .env
networks:
- ragflow
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
extra_hosts:
- "host.docker.internal:host-gateway"
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]

View File

@ -1,6 +1,5 @@
services:
es01:
container_name: ragflow-es-01
profiles:
- elasticsearch
image: elasticsearch:${STACK_VERSION}
@ -20,7 +19,6 @@ services:
- cluster.routing.allocation.disk.watermark.low=5gb
- cluster.routing.allocation.disk.watermark.high=3gb
- cluster.routing.allocation.disk.watermark.flood_stage=2gb
- TZ=${TIMEZONE}
mem_limit: ${MEM_LIMIT}
ulimits:
memlock:
@ -36,7 +34,6 @@ services:
restart: on-failure
opensearch01:
container_name: ragflow-opensearch-01
profiles:
- opensearch
image: hub.icert.top/opensearchproject/opensearch:2.19.1
@ -57,7 +54,6 @@ services:
- cluster.routing.allocation.disk.watermark.low=5gb
- cluster.routing.allocation.disk.watermark.high=3gb
- cluster.routing.allocation.disk.watermark.flood_stage=2gb
- TZ=${TIMEZONE}
- http.port=9201
mem_limit: ${MEM_LIMIT}
ulimits:
@ -74,7 +70,6 @@ services:
restart: on-failure
infinity:
container_name: ragflow-infinity
profiles:
- infinity
image: infiniflow/infinity:v0.6.1
@ -87,8 +82,6 @@ services:
- ${INFINITY_HTTP_PORT}:23820
- ${INFINITY_PSQL_PORT}:5432
env_file: .env
environment:
- TZ=${TIMEZONE}
mem_limit: ${MEM_LIMIT}
ulimits:
nofile:
@ -104,7 +97,6 @@ services:
restart: on-failure
sandbox-executor-manager:
container_name: ragflow-sandbox-executor-manager
profiles:
- sandbox
image: ${SANDBOX_EXECUTOR_MANAGER_IMAGE-infiniflow/sandbox-executor-manager:latest}
@ -119,7 +111,6 @@ services:
security_opt:
- no-new-privileges:true
environment:
- TZ=${TIMEZONE}
- SANDBOX_EXECUTOR_MANAGER_POOL_SIZE=${SANDBOX_EXECUTOR_MANAGER_POOL_SIZE:-3}
- SANDBOX_BASE_PYTHON_IMAGE=${SANDBOX_BASE_PYTHON_IMAGE:-infiniflow/sandbox-base-python:latest}
- SANDBOX_BASE_NODEJS_IMAGE=${SANDBOX_BASE_NODEJS_IMAGE:-infiniflow/sandbox-base-nodejs:latest}
@ -136,11 +127,9 @@ services:
mysql:
# mysql:5.7 linux/arm64 image is unavailable.
image: mysql:8.0.39
container_name: ragflow-mysql
env_file: .env
environment:
- MYSQL_ROOT_PASSWORD=${MYSQL_PASSWORD}
- TZ=${TIMEZONE}
command:
--max_connections=1000
--character-set-server=utf8mb4
@ -165,7 +154,6 @@ services:
minio:
image: quay.io/minio/minio:RELEASE.2025-06-13T11-33-47Z
container_name: ragflow-minio
command: server --console-address ":9001" /data
ports:
- ${MINIO_PORT}:9000
@ -174,7 +162,6 @@ services:
environment:
- MINIO_ROOT_USER=${MINIO_USER}
- MINIO_ROOT_PASSWORD=${MINIO_PASSWORD}
- TZ=${TIMEZONE}
volumes:
- minio_data:/data
networks:
@ -189,7 +176,6 @@ services:
redis:
# swr.cn-north-4.myhuaweicloud.com/ddn-k8s/docker.io/valkey/valkey:8
image: valkey/valkey:8
container_name: ragflow-redis
command: redis-server --requirepass ${REDIS_PASSWORD} --maxmemory 128mb --maxmemory-policy allkeys-lru
env_file: .env
ports:
@ -207,16 +193,48 @@ services:
start_period: 10s
tei-cpu:
profiles:
- tei-cpu
image: ${TEI_IMAGE_CPU}
hostname: tei
ports:
- ${TEI_PORT-6380}:80
env_file: .env
networks:
- ragflow
command: ["--model-id", "/data/${TEI_MODEL}"]
restart: on-failure
tei-gpu:
profiles:
- tei-gpu
image: ${TEI_IMAGE_GPU}
hostname: tei
ports:
- ${TEI_PORT-6380}:80
env_file: .env
networks:
- ragflow
command: ["--model-id", "/data/${TEI_MODEL}"]
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
restart: on-failure
kibana:
container_name: ragflow-kibana
profiles:
- kibana
image: kibana:${STACK_VERSION}
ports:
- ${KIBANA_PORT-5601}:5601
env_file: .env
environment:
- TZ=${TIMEZONE}
volumes:
- kibana_data:/usr/share/kibana/data
depends_on:
@ -245,6 +263,8 @@ volumes:
driver: local
redis_data:
driver: local
tei_data:
driver: local
kibana_data:
driver: local

View File

@ -1,40 +0,0 @@
# The RAGFlow team do not actively maintain docker-compose-gpu-CN-oc9.yml, so use them at your own risk.
# However, you are welcome to file a pull request to improve it.
include:
- ./docker-compose-base.yml
services:
ragflow:
depends_on:
mysql:
condition: service_healthy
image: edwardelric233/ragflow:oc9
container_name: ragflow-server
ports:
- ${SVR_HTTP_PORT}:9380
- 80:80
- 443:443
volumes:
- ./ragflow-logs:/ragflow/logs
- ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
env_file: .env
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=${HF_ENDPOINT}
- MACOS=${MACOS}
networks:
- ragflow
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
extra_hosts:
- "host.docker.internal:host-gateway"
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]

View File

@ -1,40 +0,0 @@
# The RAGFlow team do not actively maintain docker-compose-gpu.yml, so use them at your own risk.
# Pull requests to improve it are welcome.
include:
- ./docker-compose-base.yml
services:
ragflow:
depends_on:
mysql:
condition: service_healthy
image: ${RAGFLOW_IMAGE}
container_name: ragflow-server
ports:
- ${SVR_HTTP_PORT}:9380
- 80:80
- 443:443
volumes:
- ./ragflow-logs:/ragflow/logs
- ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
env_file: .env
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=${HF_ENDPOINT}
- MACOS=${MACOS}
networks:
- ragflow
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
extra_hosts:
- "host.docker.internal:host-gateway"
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]

View File

@ -10,7 +10,6 @@ services:
build:
context: ../
dockerfile: Dockerfile
container_name: ragflow-server
ports:
- ${SVR_HTTP_PORT}:9380
- 80:80
@ -21,11 +20,6 @@ services:
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
env_file: .env
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=${HF_ENDPOINT}
- MACOS=${MACOS:-1}
- LIGHTEN=${LIGHTEN:-1}
networks:
- ragflow
restart: on-failure
@ -38,15 +32,10 @@ services:
# mysql:
# condition: service_healthy
# image: ${RAGFLOW_IMAGE}
# container_name: ragflow-executor
# volumes:
# - ./ragflow-logs:/ragflow/logs
# - ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
# env_file: .env
# environment:
# - TZ=${TIMEZONE}
# - HF_ENDPOINT=${HF_ENDPOINT}
# - MACOS=${MACOS}
# entrypoint: "/ragflow/entrypoint_task_executor.sh 1 3"
# networks:
# - ragflow

View File

@ -2,10 +2,12 @@ include:
- ./docker-compose-base.yml
# To ensure that the container processes the locally modified `service_conf.yaml.template` instead of the one included in its image, you need to mount the local `service_conf.yaml.template` to the container.
services:
ragflow:
ragflow-cpu:
depends_on:
mysql:
condition: service_healthy
profiles:
- cpu
image: ${RAGFLOW_IMAGE}
# Example configuration to set up an MCP server:
# command:
@ -26,7 +28,6 @@ services:
# Example configration to start Admin server:
# command:
# - --enable-adminserver
container_name: ragflow-server
ports:
- ${SVR_HTTP_PORT}:9380
- ${ADMIN_SVR_HTTP_PORT}:9381
@ -44,10 +45,6 @@ services:
- ./service_conf.yaml.template:/ragflow/conf/service_conf.yaml.template
- ./entrypoint.sh:/ragflow/entrypoint.sh
env_file: .env
environment:
- TZ=${TIMEZONE}
- HF_ENDPOINT=${HF_ENDPOINT-}
- MACOS=${MACOS-}
networks:
- ragflow
restart: on-failure
@ -55,20 +52,75 @@ services:
# If you use Docker Desktop, the --add-host flag is optional. This flag ensures that the host's internal IP is exposed to the Prometheus container.
extra_hosts:
- "host.docker.internal:host-gateway"
ragflow-gpu:
depends_on:
mysql:
condition: service_healthy
profiles:
- gpu
image: ${RAGFLOW_IMAGE}
# Example configuration to set up an MCP server:
# command:
# - --enable-mcpserver
# - --mcp-host=0.0.0.0
# - --mcp-port=9382
# - --mcp-base-url=http://127.0.0.1:9380
# - --mcp-script-path=/ragflow/mcp/server/server.py
# - --mcp-mode=self-host
# - --mcp-host-api-key=ragflow-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
# Optional transport flags for MCP (customize if needed).
# Host mode need to combined with --no-transport-streamable-http-enabled flag, namely, host+streamable-http is not supported yet.
# The following are enabled by default unless explicitly disabled with --no-<flag>.
# - --no-transport-sse-enabled # Disable legacy SSE endpoints (/sse and /messages/)
# - --no-transport-streamable-http-enabled # Disable Streamable HTTP transport (/mcp endpoint)
# - --no-json-response # Disable JSON response mode in Streamable HTTP transport (instead of SSE over HTTP)
# Example configration to start Admin server:
# command:
# - --enable-adminserver
ports:
- ${SVR_HTTP_PORT}:9380
- ${ADMIN_SVR_HTTP_PORT}:9381
- 80:80
- 443:443
- 5678:5678
- 5679:5679
- 9382:9382 # entry for MCP (host_port:docker_port). The docker_port must match the value you set for `mcp-port` above.
volumes:
- ./ragflow-logs:/ragflow/logs
- ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
- ./nginx/proxy.conf:/etc/nginx/proxy.conf
- ./nginx/nginx.conf:/etc/nginx/nginx.conf
- ../history_data_agent:/ragflow/history_data_agent
- ./service_conf.yaml.template:/ragflow/conf/service_conf.yaml.template
- ./entrypoint.sh:/ragflow/entrypoint.sh
env_file: .env
networks:
- ragflow
restart: on-failure
# https://docs.docker.com/engine/daemon/prometheus/#create-a-prometheus-configuration
# If you use Docker Desktop, the --add-host flag is optional. This flag ensures that the host's internal IP is exposed to the Prometheus container.
extra_hosts:
- "host.docker.internal:host-gateway"
deploy:
resources:
reservations:
devices:
- driver: nvidia
count: all
capabilities: [gpu]
# executor:
# depends_on:
# mysql:
# condition: service_healthy
# image: ${RAGFLOW_IMAGE}
# container_name: ragflow-executor
# volumes:
# - ./ragflow-logs:/ragflow/logs
# - ./nginx/ragflow.conf:/etc/nginx/conf.d/ragflow.conf
# env_file: .env
# environment:
# - TZ=${TIMEZONE}
# - HF_ENDPOINT=${HF_ENDPOINT}
# - MACOS=${MACOS}
# entrypoint: "/ragflow/entrypoint_task_executor.sh 1 3"
# networks:
# - ragflow
@ -77,3 +129,10 @@ services:
# # If you're using Docker Desktop, the --add-host flag is optional. This flag makes sure that the host's internal IP gets exposed to the Prometheus container.
# extra_hosts:
# - "host.docker.internal:host-gateway"
# deploy:
# resources:
# reservations:
# devices:
# - driver: nvidia
# count: all
# capabilities: [gpu]

View File

@ -11,7 +11,7 @@ server {
gzip_disable "MSIE [1-6]\.";
location ~ ^/(v1|api) {
proxy_pass http://ragflow:9380;
proxy_pass http://localhost:9380;
include proxy.conf;
}

View File

@ -32,6 +32,11 @@ redis:
db: 1
password: '${REDIS_PASSWORD:-infini_rag_flow}'
host: '${REDIS_HOST:-redis}:6379'
user_default_llm:
default_models:
embedding_model:
api_key: 'xxx'
base_url: 'http://${TEI_HOST}:80'
# postgres:
# name: '${POSTGRES_DBNAME:-rag_flow}'
# user: '${POSTGRES_USER:-rag_flow}'

View File

@ -35,7 +35,7 @@ docker compose -f docker/docker-compose.yml up -d
Sets up environment for RAGFlow's dependencies: Elasticsearch/[Infinity](https://github.com/infiniflow/infinity), MySQL, MinIO, and Redis.
:::danger IMPORTANT
We do not actively maintain **docker-compose-CN-oc9.yml**, **docker-compose-gpu-CN-oc9.yml**, or **docker-compose-gpu.yml**, so use them at your own risk. However, you are welcome to file a pull request to improve any of them.
We do not actively maintain **docker-compose-CN-oc9.yml**, **docker-compose-macos.yml**, so use them at your own risk. However, you are welcome to file a pull request to improve them.
:::
## Docker environment variables
@ -109,18 +109,23 @@ RAGFlow utilizes MinIO as its object storage solution, leveraging its scalabilit
:::tip NOTE
If you cannot download the RAGFlow Docker image, try the following mirrors.
- For the `nightly-slim` edition:
- `RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly-slim` or,
- `RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly-slim`.
- For the `nightly` edition:
- `RAGFLOW_IMAGE=swr.cn-north-4.myhuaweicloud.com/infiniflow/ragflow:nightly` or,
- `RAGFLOW_IMAGE=registry.cn-hangzhou.aliyuncs.com/infiniflow/ragflow:nightly`.
:::
### Embedding service
- `TEI_MODEL`
The embedding model which text-embeddings-inference serves. Allowed values are one of `Qwen/Qwen3-Embedding-0.6B`(default), `BAAI/bge-m3`, and `BAAI/bge-small-en-v1.5`.
- `TEI_PORT`
The port used to expose the text-embeddings-inference service to the host machine, allowing **external** access to the text-embeddings-inference service running inside the Docker container. Defaults to `6380`.
### Timezone
- `TIMEZONE`
The local time zone. Defaults to `'Asia/Shanghai'`.
- `TZ`
The local time zone. Defaults to `Asia/Shanghai`.
### Hugging Face mirror site

View File

@ -39,25 +39,6 @@ This image is approximately 2 GB in size and relies on external LLM and embeddin
- For ARM64 platforms, please upgrade the `xgboost` version in **pyproject.toml** to `1.6.0` and ensure **unixODBC** is properly installed.
:::
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
uv run download_deps.py
docker build -f Dockerfile.deps -t infiniflow/ragflow_deps .
docker build --build-arg LIGHTEN=1 -f Dockerfile -t infiniflow/ragflow:nightly-slim .
```
</TabItem>
<TabItem value="including">
This image is approximately 9 GB in size. As it includes embedding models, it relies on external LLM services only.
:::danger IMPORTANT
- While we also test RAGFlow on ARM64 platforms, we do not maintain RAGFlow Docker images for ARM. However, you can build an image yourself on a `linux/arm64` or `darwin/arm64` host machine as well.
- For ARM64 platforms, please upgrade the `xgboost` version in **pyproject.toml** to `1.6.0` and ensure **unixODBC** is properly installed.
:::
```bash
git clone https://github.com/infiniflow/ragflow.git
cd ragflow/
@ -66,18 +47,19 @@ docker build -f Dockerfile.deps -t infiniflow/ragflow_deps .
docker build -f Dockerfile -t infiniflow/ragflow:nightly .
```
</TabItem>
</Tabs>
## Launch a RAGFlow Service from Docker for MacOS
After building the infiniflow/ragflow:nightly-slim image, you are ready to launch a fully-functional RAGFlow service with all the required components, such as Elasticsearch, MySQL, MinIO, Redis, and more.
After building the infiniflow/ragflow:nightly image, you are ready to launch a fully-functional RAGFlow service with all the required components, such as Elasticsearch, MySQL, MinIO, Redis, and more.
## Example: Apple M2 Pro (Sequoia)
1. Edit Docker Compose Configuration
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.21.1-slim` to `infiniflow/ragflow:nightly-slim` to use the pre-built image.
Open the `docker/.env` file. Find the `RAGFLOW_IMAGE` setting and change the image reference from `infiniflow/ragflow:v0.21.1` to `infiniflow/ragflow:nightly` to use the pre-built image.
2. Launch the Service

View File

@ -48,7 +48,7 @@ cd ragflow/
```
- full:
```bash
uv sync --python 3.10 --all-extras # install RAGFlow dependent python modules
uv sync --python 3.10 # install RAGFlow dependent python modules
```
*A virtual environment named `.venv` is created, and all Python dependencies are installed into the new environment.*

View File

@ -116,51 +116,51 @@ Run `docker compose -f docker-compose.yml up` to launch the RAGFlow server toget
*The following ASCII art confirms a successful launch:*
```bash
ragflow-server | Starting MCP Server on 0.0.0.0:9382 with base URL http://127.0.0.1:9380...
ragflow-server | Starting 1 task executor(s) on host 'dd0b5e07e76f'...
ragflow-server | 2025-04-18 15:41:18,816 INFO 27 ragflow_server log path: /ragflow/logs/ragflow_server.log, log levels: {'peewee': 'WARNING', 'pdfminer': 'WARNING', 'root': 'INFO'}
ragflow-server |
ragflow-server | __ __ ____ ____ ____ _____ ______ _______ ____
ragflow-server | | \/ |/ ___| _ \ / ___|| ____| _ \ \ / / ____| _ \
ragflow-server | | |\/| | | | |_) | \___ \| _| | |_) \ \ / /| _| | |_) |
ragflow-server | | | | | |___| __/ ___) | |___| _ < \ V / | |___| _ <
ragflow-server | |_| |_|\____|_| |____/|_____|_| \_\ \_/ |_____|_| \_\
ragflow-server |
ragflow-server | MCP launch mode: self-host
ragflow-server | MCP host: 0.0.0.0
ragflow-server | MCP port: 9382
ragflow-server | MCP base_url: http://127.0.0.1:9380
ragflow-server | INFO: Started server process [26]
ragflow-server | INFO: Waiting for application startup.
ragflow-server | INFO: Application startup complete.
ragflow-server | INFO: Uvicorn running on http://0.0.0.0:9382 (Press CTRL+C to quit)
ragflow-server | 2025-04-18 15:41:20,469 INFO 27 found 0 gpus
ragflow-server | 2025-04-18 15:41:23,263 INFO 27 init database on cluster mode successfully
ragflow-server | 2025-04-18 15:41:25,318 INFO 27 load_model /ragflow/rag/res/deepdoc/det.onnx uses CPU
ragflow-server | 2025-04-18 15:41:25,367 INFO 27 load_model /ragflow/rag/res/deepdoc/rec.onnx uses CPU
ragflow-server | ____ ___ ______ ______ __
ragflow-server | / __ \ / | / ____// ____// /____ _ __
ragflow-server | / /_/ // /| | / / __ / /_ / // __ \| | /| / /
ragflow-server | / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
ragflow-server | /_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
ragflow-server |
ragflow-server |
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 project base: /ragflow
ragflow-server | 2025-04-18 15:41:29,088 INFO 27 Current configs, from /ragflow/conf/service_conf.yaml:
ragflow-server | ragflow: {'host': '0.0.0.0', 'http_port': 9380}
docker-ragflow-cpu-1 | Starting MCP Server on 0.0.0.0:9382 with base URL http://127.0.0.1:9380...
docker-ragflow-cpu-1 | Starting 1 task executor(s) on host 'dd0b5e07e76f'...
docker-ragflow-cpu-1 | 2025-04-18 15:41:18,816 INFO 27 ragflow_server log path: /ragflow/logs/ragflow_server.log, log levels: {'peewee': 'WARNING', 'pdfminer': 'WARNING', 'root': 'INFO'}
docker-ragflow-cpu-1 |
docker-ragflow-cpu-1 | __ __ ____ ____ ____ _____ ______ _______ ____
docker-ragflow-cpu-1 | | \/ |/ ___| _ \ / ___|| ____| _ \ \ / / ____| _ \
docker-ragflow-cpu-1 | | |\/| | | | |_) | \___ \| _| | |_) \ \ / /| _| | |_) |
docker-ragflow-cpu-1 | | | | | |___| __/ ___) | |___| _ < \ V / | |___| _ <
docker-ragflow-cpu-1 | |_| |_|\____|_| |____/|_____|_| \_\ \_/ |_____|_| \_\
docker-ragflow-cpu-1 |
docker-ragflow-cpu-1 | MCP launch mode: self-host
docker-ragflow-cpu-1 | MCP host: 0.0.0.0
docker-ragflow-cpu-1 | MCP port: 9382
docker-ragflow-cpu-1 | MCP base_url: http://127.0.0.1:9380
docker-ragflow-cpu-1 | INFO: Started server process [26]
docker-ragflow-cpu-1 | INFO: Waiting for application startup.
docker-ragflow-cpu-1 | INFO: Application startup complete.
docker-ragflow-cpu-1 | INFO: Uvicorn running on http://0.0.0.0:9382 (Press CTRL+C to quit)
docker-ragflow-cpu-1 | 2025-04-18 15:41:20,469 INFO 27 found 0 gpus
docker-ragflow-cpu-1 | 2025-04-18 15:41:23,263 INFO 27 init database on cluster mode successfully
docker-ragflow-cpu-1 | 2025-04-18 15:41:25,318 INFO 27 load_model /ragflow/rag/res/deepdoc/det.onnx uses CPU
docker-ragflow-cpu-1 | 2025-04-18 15:41:25,367 INFO 27 load_model /ragflow/rag/res/deepdoc/rec.onnx uses CPU
docker-ragflow-cpu-1 | ____ ___ ______ ______ __
docker-ragflow-cpu-1 | / __ \ / | / ____// ____// /____ _ __
docker-ragflow-cpu-1 | / /_/ // /| | / / __ / /_ / // __ \| | /| / /
docker-ragflow-cpu-1 | / _, _// ___ |/ /_/ // __/ / // /_/ /| |/ |/ /
docker-ragflow-cpu-1 | /_/ |_|/_/ |_|\____//_/ /_/ \____/ |__/|__/
docker-ragflow-cpu-1 |
docker-ragflow-cpu-1 |
docker-ragflow-cpu-1 | 2025-04-18 15:41:29,088 INFO 27 RAGFlow version: v0.18.0-285-gb2c299fa full
docker-ragflow-cpu-1 | 2025-04-18 15:41:29,088 INFO 27 project base: /ragflow
docker-ragflow-cpu-1 | 2025-04-18 15:41:29,088 INFO 27 Current configs, from /ragflow/conf/service_conf.yaml:
docker-ragflow-cpu-1 | ragflow: {'host': '0.0.0.0', 'http_port': 9380}
...
ragflow-server | * Running on all addresses (0.0.0.0)
ragflow-server | * Running on http://127.0.0.1:9380
ragflow-server | * Running on http://172.19.0.6:9380
ragflow-server | ______ __ ______ __
ragflow-server | /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
ragflow-server | / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
ragflow-server | / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
ragflow-server | /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
ragflow-server |
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 TaskExecutor: RAGFlow version: v0.18.0-285-gb2c299fa full
ragflow-server | 2025-04-18 15:41:34,501 INFO 32 Use Elasticsearch http://es01:9200 as the doc engine.
docker-ragflow-cpu-1 | * Running on all addresses (0.0.0.0)
docker-ragflow-cpu-1 | * Running on http://127.0.0.1:9380
docker-ragflow-cpu-1 | * Running on http://172.19.0.6:9380
docker-ragflow-cpu-1 | ______ __ ______ __
docker-ragflow-cpu-1 | /_ __/___ ______/ /__ / ____/ _____ _______ __/ /_____ _____
docker-ragflow-cpu-1 | / / / __ `/ ___/ //_/ / __/ | |/_/ _ \/ ___/ / / / __/ __ \/ ___/
docker-ragflow-cpu-1 | / / / /_/ (__ ) ,< / /____> </ __/ /__/ /_/ / /_/ /_/ / /
docker-ragflow-cpu-1 | /_/ \__,_/____/_/|_| /_____/_/|_|\___/\___/\__,_/\__/\____/_/
docker-ragflow-cpu-1 |
docker-ragflow-cpu-1 | 2025-04-18 15:41:34,501 INFO 32 TaskExecutor: RAGFlow version: v0.18.0-285-gb2c299fa full
docker-ragflow-cpu-1 | 2025-04-18 15:41:34,501 INFO 32 Use Elasticsearch http://es01:9200 as the doc engine.
...
```
@ -176,7 +176,7 @@ This section is contributed by our community contributor [yiminghub2024](https:/
iii. Copy [docker/entrypoint.sh](https://github.com/infiniflow/ragflow/blob/main/docker/entrypoint.sh) locally.
iv. Install the required dependencies using `uv`:
- Run `uv add mcp` or
- Copy [pyproject.toml](https://github.com/infiniflow/ragflow/blob/main/pyproject.toml) locally and run `uv sync --python 3.10 --all-extras`.
- Copy [pyproject.toml](https://github.com/infiniflow/ragflow/blob/main/pyproject.toml) locally and run `uv sync --python 3.10`.
2. Edit **docker-compose.yml** to enable MCP (disabled by default).
3. Launch the MCP server:
@ -189,7 +189,7 @@ docker compose -f docker-compose.yml up -d
Run the following to check the logs the RAGFlow server and the MCP server:
```bash
docker logs ragflow-server
docker logs docker-ragflow-cpu-1
```
## Security considerations

View File

@ -99,7 +99,7 @@ _The server replies with an `initialize` response, including the supported proto
```bash
event: message
data: {"jsonrpc":"2.0","id":1,"result":{"protocolVersion":"2025-03-26","capabilities":{"experimental":{"headers":{"host":"127.0.0.1:9382","user-agent":"curl/8.7.1","accept":"*/*","api_key":"ragflow-xxxxxxxxxxxx","accept-encoding":"gzip"}},"tools":{"listChanged":false}},"serverInfo":{"name":"ragflow-server","version":"1.9.4"}}}
data: {"jsonrpc":"2.0","id":1,"result":{"protocolVersion":"2025-03-26","capabilities":{"experimental":{"headers":{"host":"127.0.0.1:9382","user-agent":"curl/8.7.1","accept":"*/*","api_key":"ragflow-xxxxxxxxxxxx","accept-encoding":"gzip"}},"tools":{"listChanged":false}},"serverInfo":{"name":"docker-ragflow-cpu-1","version":"1.9.4"}}}
```
### 3. Acknowledge readiness

View File

@ -33,6 +33,8 @@ Each RAGFlow release is available in two editions:
- **Slim edition**: excludes built-in embedding models and is identified by a **-slim** suffix added to the version name. Example: `infiniflow/ragflow:v0.21.1-slim`
- **Full edition**: includes built-in embedding models and has no suffix added to the version name. Example: `infiniflow/ragflow:v0.21.1`
Note: Starting with `v0.22.0`, we ship only the slim edition and no longer append the **-slim** suffix to the image tag.
---
### Which embedding models can be deployed locally?
@ -44,6 +46,8 @@ RAGFlow offers two Docker image editions, `v0.21.1-slim` and `v0.21.1`:
- `BAAI/bge-large-zh-v1.5`
- `maidalun1020/bce-embedding-base_v1`
Note: Starting with `v0.22.0`, we ship only the slim edition and no longer append the **-slim** suffix to the image tag.
---
### Where to find the version of RAGFlow? How to interpret it?
@ -220,7 +224,7 @@ Ignore this warning and continue. All system warnings can be ignored.
![anomaly](https://github.com/infiniflow/ragflow/assets/93570324/beb7ad10-92e4-4a58-8886-bfb7cbd09e5d)
You will not log in to RAGFlow unless the server is fully initialized. Run `docker logs -f ragflow-server`.
You will not log in to RAGFlow unless the server is fully initialized. Run `docker logs -f docker-ragflow-cpu-1`.
*The server is successfully initialized, if your system displays the following:*
@ -256,7 +260,7 @@ Click the red cross beside the 'parsing status' bar, then restart the parsing pr
1. Check the log of your RAGFlow server to see if it is running properly:
```bash
docker logs -f ragflow-server
docker logs -f docker-ragflow-cpu-1
```
2. Check if the **task_executor.py** process exists.
@ -310,7 +314,7 @@ tail -f ragflow/docker/ragflow-logs/*.log
*The following is an example result:*
```bash
5bc45806b680 infiniflow/ragflow:latest "./entrypoint.sh" 11 hours ago Up 11 hours 0.0.0.0:80->80/tcp, :::80->80/tcp, 0.0.0.0:443->443/tcp, :::443->443/tcp, 0.0.0.0:9380->9380/tcp, :::9380->9380/tcp ragflow-server
5bc45806b680 infiniflow/ragflow:latest "./entrypoint.sh" 11 hours ago Up 11 hours 0.0.0.0:80->80/tcp, :::80->80/tcp, 0.0.0.0:443->443/tcp, :::443->443/tcp, 0.0.0.0:9380->9380/tcp, :::9380->9380/tcp docker-ragflow-cpu-1
91220e3285dd docker.elastic.co/elasticsearch/elasticsearch:8.11.3 "/bin/tini -- /usr/l…" 11 hours ago Up 11 hours (healthy) 9300/tcp, 0.0.0.0:9200->9200/tcp, :::9200->9200/tcp ragflow-es-01
d8c86f06c56b mysql:5.7.18 "docker-entrypoint.s…" 7 days ago Up 16 seconds (healthy) 0.0.0.0:3306->3306/tcp, :::3306->3306/tcp ragflow-mysql
cd29bcb254bc quay.io/minio/minio:RELEASE.2023-12-20T01-00-02Z "/usr/bin/docker-ent…" 2 weeks ago Up 11 hours 0.0.0.0:9001->9001/tcp, :::9001->9001/tcp, 0.0.0.0:9000->9000/tcp, :::9000->9000/tcp ragflow-minio

View File

@ -47,7 +47,7 @@ By default, a combination of weighted keyword similarity and weighted vector cos
As a starter, you can skip this step to stay with the default retrieval method.
:::caution WARNING
Using a rerank model will *significantly* increase the system's response time. If you must use a rerank model, ensure you use a SaaS reranker; if you prefer a locally deployed rerank model, ensure you start RAGFlow with **docker-compose-gpu.yml**.
Using a rerank model will *significantly* increase the system's response time.
:::
### 5. Enable cross-language search
@ -140,6 +140,5 @@ The global variable name for the output of the **Retrieval** component, which ca
Go through the checklist below for best performance:
- Leave the **Rerank model** field empty.
- If you must use a rerank model, ensure you use a SaaS reranker; if you prefer a locally deployed rerank model, ensure you start RAGFlow with **docker-compose-gpu.yml**.
- Leave the **Rerank model** field empty to disable rerank.
- Disable **Use knowledge graph**.

View File

@ -62,7 +62,7 @@ $ sudo docker exec ollama ollama pull bge-m3
- If RAGFlow runs in Docker, the localhost is mapped within the RAGFlow Docker container as `host.docker.internal`. If Ollama runs on the same host machine, the right URL to use for Ollama would be `http://host.docker.internal:11434/' and you should check that Ollama is accessible from inside the RAGFlow container with:
```bash
$ sudo docker exec -it ragflow-server bash
$ sudo docker exec -it docker-ragflow-cpu-1 bash
$ curl http://host.docker.internal:11434/
> Ollama is running
```

View File

@ -7,15 +7,15 @@ slug: /upgrade_ragflow
import Tabs from '@theme/Tabs';
import TabItem from '@theme/TabItem';
Upgrade RAGFlow to `nightly-slim`/`nightly` or the latest, published release.
Upgrade RAGFlow to `nightly` or the latest, published release.
:::info NOTE
Upgrading RAGFlow in itself will *not* remove your uploaded/historical data. However, be aware that `docker compose -f docker/docker-compose.yml down -v` will remove Docker container volumes, resulting in data loss.
:::
## Upgrade RAGFlow to `nightly-slim`/`nightly`, the most recent, tested Docker image
## Upgrade RAGFlow to `nightly`, the most recent, tested Docker image
`nightly-slim` refers to the RAGFlow Docker image *without* embedding models, while `nightly` refers to the RAGFlow Docker image with embedding models. For details on their differences, see [ragflow/docker/.env](https://github.com/infiniflow/ragflow/blob/main/docker/.env).
`nightly` refers to the RAGFlow Docker image without embedding models.
To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker image:
@ -27,27 +27,9 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
2. Update **ragflow/docker/.env**:
<Tabs
defaultValue="nightly-slim"
values={[
{label: 'nightly-slim', value: 'nightly-slim'},
{label: 'nightly', value: 'nightly'},
]}>
<TabItem value="nightly-slim">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:nightly-slim
```
</TabItem>
<TabItem value="nightly">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:nightly
```
</TabItem>
</Tabs>
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:nightly
```
3. Update RAGFlow image and restart RAGFlow:
@ -74,27 +56,9 @@ To upgrade RAGFlow, you must upgrade **both** your code **and** your Docker imag
3. Update **ragflow/docker/.env**:
<Tabs
defaultValue="slim"
values={[
{label: 'slim', value: 'slim'},
{label: 'full', value: 'full'},
]}>
<TabItem value="slim">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1-slim
```
</TabItem>
<TabItem value="full">
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1
```
</TabItem>
</Tabs>
```bash
RAGFLOW_IMAGE=infiniflow/ragflow:v0.21.1
```
4. Update the RAGFlow image and restart RAGFlow:

View File

@ -196,9 +196,6 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
```bash
# Use CPU for embedding and DeepDoc tasks:
$ docker compose -f docker-compose.yml up -d
# To use GPU to accelerate embedding and DeepDoc tasks:
# docker compose -f docker-compose-gpu.yml up -d
```
```mdx-code-block
@ -207,10 +204,9 @@ This section provides instructions on setting up the RAGFlow server on Linux. If
| RAGFlow image tag | Image size (GB) | Has embedding models and Python packages? | Stable? |
| ------------------- | --------------- | ----------------------------------------- | ------------------------ |
| `v0.21.1` | &approx;9 | :heavy_check_mark: | Stable release |
| `v0.21.1-slim` | &approx;2 | ❌ | Stable release |
| `nightly` | &approx;9 | :heavy_check_mark: | *Unstable* nightly build |
| `nightly-slim` | &approx;2 | ❌ | *Unstable* nightly build |
| v0.21.1 | &approx;9 | ✔️ | Stable release |
| v0.21.1-slim | &approx;2 | ❌ | Stable release |
| nightly | &approx;2 | | _Unstable_ nightly build |
```mdx-code-block
</APITable>
@ -232,7 +228,7 @@ The image size shown refers to the size of the *downloaded* Docker image, which
4. Check the server status after having the server up and running:
```bash
$ docker logs -f ragflow-server
$ docker logs -f docker-ragflow-cpu-1
```
_The following output confirms a successful launch of the system:_

View File

@ -42,8 +42,6 @@ repos = [
"InfiniFlow/text_concat_xgb_v1.0",
"InfiniFlow/deepdoc",
"InfiniFlow/huqie",
"BAAI/bge-large-zh-v1.5",
"maidalun1020/bce-embedding-base_v1",
]
def download_model(repo_id):

View File

@ -13,5 +13,5 @@ data:
cluster.routing.allocation.disk.watermark.low: 5gb
cluster.routing.allocation.disk.watermark.high: 3gb
cluster.routing.allocation.disk.watermark.flood_stage: 2gb
TZ: {{ .Values.env.TIMEZONE }}
TZ: {{ .Values.env.TZ }}
{{- end -}}

View File

@ -13,6 +13,6 @@ data:
cluster.routing.allocation.disk.watermark.low: 5gb
cluster.routing.allocation.disk.watermark.high: 3gb
cluster.routing.allocation.disk.watermark.flood_stage: 2gb
TZ: {{ .Values.env.TIMEZONE }}
TZ: {{ .Values.env.TZ }}
http.port: "9201"
{{- end -}}

View File

@ -37,7 +37,7 @@ env:
REDIS_PASSWORD: infini_rag_flow_helm
# The local time zone.
TIMEZONE: "Asia/Shanghai"
TZ: "Asia/Shanghai"
# Uncomment the following line if you have limited access to huggingface.co:
# HF_ENDPOINT: https://hf-mirror.com

View File

@ -131,7 +131,7 @@ python example_usage.py
```bash
# Check RAGFlow server logs
docker logs ragflow-server
docker logs docker-ragflow-cpu-1
# Look for messages like:
# "Firecrawl plugin loaded successfully"

View File

@ -7,14 +7,14 @@ license-files = ["LICENSE"]
readme = "README.md"
requires-python = ">=3.10,<3.13"
dependencies = [
"datrie==0.8.2",
"datrie>=0.8.3,<0.9.0",
"akshare>=1.15.78,<2.0.0",
"azure-storage-blob==12.22.0",
"azure-identity==1.17.1",
"azure-storage-file-datalake==12.16.0",
"anthropic==0.34.1",
"arxiv==2.1.3",
"aspose-slides>=24.9.0,<25.0.0; platform_machine == 'x86_64' or (sys_platform == 'darwin' and platform_machine == 'arm64')",
"aspose-slides>=25.10.0,<26.0.0; platform_machine == 'x86_64' or (sys_platform == 'darwin' and platform_machine == 'arm64')",
"beartype>=0.18.5,<0.19.0",
"bio==1.7.1",
"blinker==1.7.0",
@ -137,16 +137,7 @@ dependencies = [
"mammoth>=1.11.0",
"markdownify>=1.2.0",
"captcha>=0.7.1",
]
[project.optional-dependencies]
full = [
"bcembedding==0.1.5",
"fastembed>=0.3.6,<0.4.0; sys_platform == 'darwin' or platform_machine != 'x86_64'",
"fastembed-gpu>=0.3.6,<0.4.0; sys_platform != 'darwin' and platform_machine == 'x86_64'",
"flagembedding==1.2.10",
"torch>=2.5.0,<3.0.0",
"transformers>=4.35.0,<5.0.0",
"pip>=25.2",
]
[dependency-groups]

View File

@ -14,9 +14,7 @@
# limitations under the License.
#
import json
import logging
import os
import re
import threading
from abc import ABC
from urllib.parse import urljoin
@ -25,15 +23,14 @@ import dashscope
import google.generativeai as genai
import numpy as np
import requests
from huggingface_hub import snapshot_download
from ollama import Client
from openai import OpenAI
from zhipuai import ZhipuAI
from api import settings
from api.utils.file_utils import get_home_cache_dir
from api.utils.log_utils import log_exception
from rag.utils import num_tokens_from_string, truncate
from api import settings
import logging
class Base(ABC):
@ -63,71 +60,42 @@ class Base(ABC):
return 0
class DefaultEmbedding(Base):
_FACTORY_NAME = "BAAI"
class BuiltinEmbed(Base):
_FACTORY_NAME = "Builtin"
MAX_TOKENS = {"Qwen/Qwen3-Embedding-0.6B": 30000, "BAAI/bge-m3": 8000, "BAAI/bge-small-en-v1.5": 500}
_model = None
_model_name = ""
_max_tokens = 500
_model_lock = threading.Lock()
def __init__(self, key, model_name, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not settings.LIGHTEN:
input_cuda_visible_devices = None
with DefaultEmbedding._model_lock:
import torch
from FlagEmbedding import FlagModel
if "CUDA_VISIBLE_DEVICES" in os.environ:
input_cuda_visible_devices = os.environ["CUDA_VISIBLE_DEVICES"]
os.environ["CUDA_VISIBLE_DEVICES"] = "0" # handle some issues with multiple GPUs when initializing the model
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
try:
DefaultEmbedding._model = FlagModel(
os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)),
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=torch.cuda.is_available(),
)
DefaultEmbedding._model_name = model_name
except Exception:
model_dir = snapshot_download(
repo_id="BAAI/bge-large-zh-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
)
DefaultEmbedding._model = FlagModel(model_dir, query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:", use_fp16=torch.cuda.is_available())
finally:
if input_cuda_visible_devices:
# restore CUDA_VISIBLE_DEVICES
os.environ["CUDA_VISIBLE_DEVICES"] = input_cuda_visible_devices
self._model = DefaultEmbedding._model
self._model_name = DefaultEmbedding._model_name
logging.info(f"Initialize BuiltinEmbed according to settings.EMBEDDING_CFG: {settings.EMBEDDING_CFG}")
embedding_cfg = settings.EMBEDDING_CFG
if not BuiltinEmbed._model and "tei-" in os.getenv("COMPOSE_PROFILES", ""):
with BuiltinEmbed._model_lock:
BuiltinEmbed._model_name = settings.EMBEDDING_MDL
BuiltinEmbed._max_tokens = BuiltinEmbed.MAX_TOKENS.get(settings.EMBEDDING_MDL, 500)
BuiltinEmbed._model = HuggingFaceEmbed(embedding_cfg["api_key"], settings.EMBEDDING_MDL, base_url=embedding_cfg["base_url"])
self._model = BuiltinEmbed._model
self._model_name = BuiltinEmbed._model_name
self._max_tokens = BuiltinEmbed._max_tokens
def encode(self, texts: list):
batch_size = 16
texts = [truncate(t, 2048) for t in texts]
texts = [truncate(t, self._max_tokens) for t in texts]
token_count = 0
for t in texts:
token_count += num_tokens_from_string(t)
ress = None
for i in range(0, len(texts), batch_size):
embeddings, token_count_delta = self._model.encode(texts[i : i + batch_size])
token_count += token_count_delta
if ress is None:
ress = self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)
ress = embeddings
else:
ress = np.concatenate((ress, self._model.encode(texts[i : i + batch_size], convert_to_numpy=True)), axis=0)
ress = np.concatenate((ress, embeddings), axis=0)
return ress, token_count
def encode_queries(self, text: str):
token_count = num_tokens_from_string(text)
return self._model.encode_queries([text], convert_to_numpy=False)[0][0].cpu().numpy(), token_count
return self._model.encode_queries(text)
class OpenAIEmbed(Base):
@ -326,51 +294,6 @@ class OllamaEmbed(Base):
log_exception(_e, res)
class FastEmbed(DefaultEmbedding):
_FACTORY_NAME = "FastEmbed"
def __init__(
self,
key: str | None = None,
model_name: str = "BAAI/bge-small-en-v1.5",
cache_dir: str | None = None,
threads: int | None = None,
**kwargs,
):
if not settings.LIGHTEN:
with FastEmbed._model_lock:
from fastembed import TextEmbedding
if not DefaultEmbedding._model or model_name != DefaultEmbedding._model_name:
try:
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
DefaultEmbedding._model_name = model_name
except Exception:
cache_dir = snapshot_download(
repo_id="BAAI/bge-small-en-v1.5", local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False
)
DefaultEmbedding._model = TextEmbedding(model_name, cache_dir, threads, **kwargs)
self._model = DefaultEmbedding._model
self._model_name = model_name
def encode(self, texts: list):
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
encodings = self._model.model.tokenizer.encode_batch(texts)
total_tokens = sum(len(e) for e in encodings)
embeddings = [e.tolist() for e in self._model.embed(texts, batch_size=16)]
return np.array(embeddings), total_tokens
def encode_queries(self, text: str):
# Using the internal tokenizer to encode the texts and get the total
# number of tokens
encoding = self._model.model.tokenizer.encode(text)
embedding = next(self._model.query_embed(text))
return np.array(embedding), len(encoding.ids)
class XinferenceEmbed(Base):
_FACTORY_NAME = "Xinference"
@ -407,14 +330,7 @@ class YoudaoEmbed(Base):
_client = None
def __init__(self, key=None, model_name="maidalun1020/bce-embedding-base_v1", **kwargs):
if not settings.LIGHTEN and not YoudaoEmbed._client:
from BCEmbedding import EmbeddingModel as qanthing
try:
logging.info("LOADING BCE...")
YoudaoEmbed._client = qanthing(model_name_or_path=os.path.join(get_home_cache_dir(), "bce-embedding-base_v1"))
except Exception:
YoudaoEmbed._client = qanthing(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
pass
def encode(self, texts: list):
batch_size = 10
@ -885,21 +801,18 @@ class HuggingFaceEmbed(Base):
self.base_url = base_url or "http://127.0.0.1:8080"
def encode(self, texts: list):
embeddings = []
for text in texts:
response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
response = requests.post(f"{self.base_url}/embed", json={"inputs": texts}, headers={"Content-Type": "application/json"})
if response.status_code == 200:
embedding = response.json()
embeddings.append(embedding[0])
embeddings = response.json()
else:
raise Exception(f"Error: {response.status_code} - {response.text}")
return np.array(embeddings), sum([num_tokens_from_string(text) for text in texts])
def encode_queries(self, text):
def encode_queries(self, text: str):
response = requests.post(f"{self.base_url}/embed", json={"inputs": text}, headers={"Content-Type": "application/json"})
if response.status_code == 200:
embedding = response.json()
return np.array(embedding[0]), num_tokens_from_string(text)
embedding = response.json()[0]
return np.array(embedding), num_tokens_from_string(text)
else:
raise Exception(f"Error: {response.status_code} - {response.text}")

View File

@ -14,21 +14,14 @@
# limitations under the License.
#
import json
import os
import re
import threading
from abc import ABC
from collections.abc import Iterable
from urllib.parse import urljoin
import httpx
import numpy as np
import requests
from huggingface_hub import snapshot_download
from yarl import URL
from api import settings
from api.utils.file_utils import get_home_cache_dir
from api.utils.log_utils import log_exception
from rag.utils import num_tokens_from_string, truncate, total_token_count_from_response
@ -47,100 +40,6 @@ class Base(ABC):
return total_token_count_from_response(resp)
class DefaultRerank(Base):
_FACTORY_NAME = "BAAI"
_model = None
_model_lock = threading.Lock()
def __init__(self, key, model_name, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not settings.LIGHTEN and not DefaultRerank._model:
import torch
from FlagEmbedding import FlagReranker
with DefaultRerank._model_lock:
if not DefaultRerank._model:
try:
DefaultRerank._model = FlagReranker(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), use_fp16=torch.cuda.is_available())
except Exception:
model_dir = snapshot_download(repo_id=model_name, local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False)
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
self._model = DefaultRerank._model
self._dynamic_batch_size = 8
self._min_batch_size = 1
def torch_empty_cache(self):
try:
import torch
torch.cuda.empty_cache()
except Exception as e:
log_exception(e)
def _process_batch(self, pairs, max_batch_size=None):
"""template method for subclass call"""
old_dynamic_batch_size = self._dynamic_batch_size
if max_batch_size is not None:
self._dynamic_batch_size = max_batch_size
res = np.array(len(pairs), dtype=float)
i = 0
while i < len(pairs):
cur_i = i
current_batch = self._dynamic_batch_size
max_retries = 5
retry_count = 0
while retry_count < max_retries:
try:
# call subclass implemented batch processing calculation
batch_scores = self._compute_batch_scores(pairs[i : i + current_batch])
res[i : i + current_batch] = batch_scores
i += current_batch
self._dynamic_batch_size = min(self._dynamic_batch_size * 2, 8)
break
except RuntimeError as e:
if "CUDA out of memory" in str(e) and current_batch > self._min_batch_size:
current_batch = max(current_batch // 2, self._min_batch_size)
self.torch_empty_cache()
i = cur_i # reset i to the start of the current batch
retry_count += 1
else:
raise
if retry_count >= max_retries:
raise RuntimeError("max retry times, still cannot process batch, please check your GPU memory")
self.torch_empty_cache()
self._dynamic_batch_size = old_dynamic_batch_size
return np.array(res)
def _compute_batch_scores(self, batch_pairs, max_length=None):
if max_length is None:
scores = self._model.compute_score(batch_pairs, normalize=True)
else:
scores = self._model.compute_score(batch_pairs, max_length=max_length, normalize=True)
if not isinstance(scores, Iterable):
scores = [scores]
return scores
def similarity(self, query: str, texts: list):
pairs = [(query, truncate(t, 2048)) for t in texts]
token_count = 0
for _, t in pairs:
token_count += num_tokens_from_string(t)
batch_size = 4096
res = self._process_batch(pairs, max_batch_size=batch_size)
return np.array(res), token_count
class JinaRerank(Base):
_FACTORY_NAME = "Jina"
@ -162,36 +61,6 @@ class JinaRerank(Base):
return rank, self.total_token_count(res)
class YoudaoRerank(DefaultRerank):
_FACTORY_NAME = "Youdao"
_model = None
_model_lock = threading.Lock()
def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs):
if not settings.LIGHTEN and not YoudaoRerank._model:
from BCEmbedding import RerankerModel
with YoudaoRerank._model_lock:
if not YoudaoRerank._model:
try:
YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)))
except Exception:
YoudaoRerank._model = RerankerModel(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
self._model = YoudaoRerank._model
self._dynamic_batch_size = 8
self._min_batch_size = 1
def similarity(self, query: str, texts: list):
pairs = [(query, truncate(t, self._model.max_length)) for t in texts]
token_count = 0
for _, t in pairs:
token_count += num_tokens_from_string(t)
batch_size = 8
res = self._process_batch(pairs, max_batch_size=batch_size)
return np.array(res), token_count
class XInferenceRerank(Base):
_FACTORY_NAME = "Xinference"
@ -514,7 +383,7 @@ class QWenRerank(Base):
raise ValueError(f"Error calling QWenRerank model {self.model_name}: {resp.status_code} - {resp.text}")
class HuggingfaceRerank(DefaultRerank):
class HuggingfaceRerank(Base):
_FACTORY_NAME = "HuggingFace"
@staticmethod

View File

@ -17,6 +17,7 @@ import os
import logging
from api.utils.configs import get_base_config, decrypt_database_config
from api.utils.file_utils import get_project_base_directory
from api.utils.common import pip_install_torch
# Server
RAG_CONF_PATH = os.path.join(get_project_base_directory(), "conf")
@ -65,6 +66,7 @@ TAG_FLD = "tag_feas"
PARALLEL_DEVICES = 0
try:
pip_install_torch()
import torch.cuda
PARALLEL_DEVICES = torch.cuda.device_count()
logging.info(f"found {PARALLEL_DEVICES} gpus")

View File

@ -1,109 +0,0 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from jina import Deployment
from docarray import BaseDoc
from jina import Executor, requests
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
import argparse
import torch
class Prompt(BaseDoc):
message: list[dict]
gen_conf: dict
class Generation(BaseDoc):
text: str
tokenizer = None
model_name = ""
class TokenStreamingExecutor(Executor):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.model = AutoModelForCausalLM.from_pretrained(
model_name, device_map="auto", torch_dtype="auto"
)
@requests(on="/chat")
async def generate(self, doc: Prompt, **kwargs) -> Generation:
text = tokenizer.apply_chat_template(
doc.message,
tokenize=False,
)
inputs = tokenizer([text], return_tensors="pt")
generation_config = GenerationConfig(
**doc.gen_conf,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
generated_ids = self.model.generate(
inputs.input_ids, generation_config=generation_config
)
generated_ids = [
output_ids[len(input_ids) :]
for input_ids, output_ids in zip(inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
yield Generation(text=response)
@requests(on="/stream")
async def task(self, doc: Prompt, **kwargs) -> Generation:
text = tokenizer.apply_chat_template(
doc.message,
tokenize=False,
)
input = tokenizer([text], return_tensors="pt")
input_len = input["input_ids"].shape[1]
max_new_tokens = 512
if "max_new_tokens" in doc.gen_conf:
max_new_tokens = doc.gen_conf.pop("max_new_tokens")
generation_config = GenerationConfig(
**doc.gen_conf,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.eos_token_id
)
for _ in range(max_new_tokens):
output = self.model.generate(
**input, max_new_tokens=1, generation_config=generation_config
)
if output[0][-1] == tokenizer.eos_token_id:
break
yield Generation(
text=tokenizer.decode(output[0][input_len:], skip_special_tokens=True)
)
input = {
"input_ids": output,
"attention_mask": torch.ones(1, len(output[0])),
}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, help="Model name or path")
parser.add_argument("--port", default=12345, type=int, help="Jina serving port")
args = parser.parse_args()
model_name = args.model_name
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
with Deployment(
uses=TokenStreamingExecutor, port=args.port, protocol="grpc"
) as dep:
dep.block()

View File

@ -29,6 +29,7 @@ from api.db.services.pipeline_operation_log_service import PipelineOperationLogS
from api.utils.api_utils import timeout
from api.utils.base64_image import image2id
from api.utils.log_utils import init_root_logger, get_project_base_directory
from api.utils.configs import show_configs
from graphrag.general.index import run_graphrag_for_kb
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
from rag.flow.pipeline import Pipeline
@ -475,7 +476,7 @@ async def embedding(docs, mdl, parser_config=None, callback=None):
tk_count = 0
if len(tts) == len(cnts):
vts, c = await trio.to_thread.run_sync(lambda: mdl.encode(tts[0: 1]))
tts = np.concatenate([vts for _ in range(len(tts))], axis=0)
tts = np.concatenate([vts[0] for _ in range(len(tts))], axis=0)
tk_count += c
@timeout(60)
@ -1061,7 +1062,10 @@ async def main():
/____/
""")
logging.info(f'RAGFlow version: {get_ragflow_version()}')
show_configs()
settings.init_settings()
from api.settings import EMBEDDING_CFG
logging.info(f'api.settings.EMBEDDING_CFG: {EMBEDDING_CFG}')
print_rag_settings()
if sys.platform != "win32":
signal.signal(signal.SIGUSR1, start_tracemalloc_and_snapshot)

View File

@ -1,6 +1,5 @@
services:
sandbox-executor-manager:
container_name: sandbox-executor-manager
build:
context: ./executor_manager
dockerfile: Dockerfile

View File

@ -141,7 +141,7 @@ def set_tenant_info(get_auth):
tenant_info = {
"tenant_id": tenant_id,
"llm_id": "glm-4-flash@ZHIPU-AI",
"embd_id": "BAAI/bge-large-zh-v1.5@BAAI",
"embd_id": "BAAI/bge-small-en-v1.5@Builtin",
"img2txt_id": "glm-4v@ZHIPU-AI",
"asr_id": "",
"tts_id": None,

View File

@ -221,11 +221,10 @@ class TestDatasetCreate:
@pytest.mark.parametrize(
"name, embedding_model",
[
("BAAI/bge-large-zh-v1.5@BAAI", "BAAI/bge-large-zh-v1.5@BAAI"),
("maidalun1020/bce-embedding-base_v1@Youdao", "maidalun1020/bce-embedding-base_v1@Youdao"),
("BAAI/bge-small-en-v1.5@Builtin", "BAAI/bge-small-en-v1.5@Builtin"),
("embedding-3@ZHIPU-AI", "embedding-3@ZHIPU-AI"),
],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu"],
ids=["builtin_baai", "tenant_zhipu"],
)
def test_embedding_model(self, get_http_api_auth, name, embedding_model):
payload = {"name": name, "embedding_model": embedding_model}
@ -257,11 +256,11 @@ class TestDatasetCreate:
@pytest.mark.parametrize(
"name, embedding_model",
[
("missing_at", "BAAI/bge-large-zh-v1.5BAAI"),
("missing_model_name", "@BAAI"),
("missing_provider", "BAAI/bge-large-zh-v1.5@"),
("whitespace_only_model_name", " @BAAI"),
("whitespace_only_provider", "BAAI/bge-large-zh-v1.5@ "),
("missing_at", "BAAI/bge-small-en-v1.5Builtin"),
("missing_model_name", "@Builtin"),
("missing_provider", "BAAI/bge-small-en-v1.5@"),
("whitespace_only_model_name", " @Builtin"),
("whitespace_only_provider", "BAAI/bge-small-en-v1.5@ "),
],
ids=["missing_at", "empty_model_name", "empty_provider", "whitespace_only_model_name", "whitespace_only_provider"],
)
@ -279,7 +278,7 @@ class TestDatasetCreate:
payload = {"name": "embedding_model_unset"}
res = create_dataset(get_http_api_auth, payload)
assert res["code"] == 0, res
assert res["data"]["embedding_model"] == "BAAI/bge-large-zh-v1.5@BAAI", res
assert res["data"]["embedding_model"] == "BAAI/bge-small-en-v1.5@Builtin", res
@pytest.mark.p2
def test_embedding_model_none(self, get_http_api_auth):

View File

@ -255,11 +255,10 @@ class TestDatasetUpdate:
@pytest.mark.parametrize(
"embedding_model",
[
"BAAI/bge-large-zh-v1.5@BAAI",
"maidalun1020/bce-embedding-base_v1@Youdao",
"BAAI/bge-small-en-v1.5@Builtin",
"embedding-3@ZHIPU-AI",
],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu"],
ids=["builtin_baai", "tenant_zhipu"],
)
def test_embedding_model(self, get_http_api_auth, add_dataset_func, embedding_model):
dataset_id = add_dataset_func
@ -296,11 +295,11 @@ class TestDatasetUpdate:
@pytest.mark.parametrize(
"name, embedding_model",
[
("missing_at", "BAAI/bge-large-zh-v1.5BAAI"),
("missing_model_name", "@BAAI"),
("missing_provider", "BAAI/bge-large-zh-v1.5@"),
("whitespace_only_model_name", " @BAAI"),
("whitespace_only_provider", "BAAI/bge-large-zh-v1.5@ "),
("missing_at", "BAAI/bge-small-en-v1.5Builtin"),
("missing_model_name", "@Builtin"),
("missing_provider", "BAAI/bge-small-en-v1.5@"),
("whitespace_only_model_name", " @Builtin"),
("whitespace_only_provider", "BAAI/bge-small-en-v1.5@ "),
],
ids=["missing_at", "empty_model_name", "empty_provider", "whitespace_only_model_name", "whitespace_only_provider"],
)

543
sdk/python/uv.lock generated
View File

@ -1,343 +1,354 @@
version = 1
revision = 1
revision = 3
requires-python = ">=3.10, <3.13"
[[package]]
name = "attrs"
version = "25.3.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/5a/b0/1367933a8532ee6ff8d63537de4f1177af4bff9f3e829baf7331f595bb24/attrs-25.3.0.tar.gz", hash = "sha256:75d7cefc7fb576747b2c81b4442d4d4a1ce0900973527c011d1030fd3bf4af1b" }
version = "25.4.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/6b/5c/685e6633917e101e5dcb62b9dd76946cbb57c26e133bae9e0cd36033c0a9/attrs-25.4.0.tar.gz", hash = "sha256:16d5969b87f0859ef33a48b35d55ac1be6e42ae49d5e853b597db70c35c57e11", size = 934251, upload-time = "2025-10-06T13:54:44.725Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/77/06/bb80f5f86020c4551da315d78b3ab75e8228f89f0162f2c3a819e407941a/attrs-25.3.0-py3-none-any.whl", hash = "sha256:427318ce031701fea540783410126f03899a97ffc6f61596ad581ac2e40e3bc3" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl", hash = "sha256:adcf7e2a1fb3b36ac48d97835bb6d8ade15b8dcce26aba8bf1d14847b57a3373", size = 67615, upload-time = "2025-10-06T13:54:43.17Z" },
]
[[package]]
name = "beartype"
version = "0.18.5"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/96/15/4e623478a9628ad4cee2391f19aba0b16c1dd6fedcb2a399f0928097b597/beartype-0.18.5.tar.gz", hash = "sha256:264ddc2f1da9ec94ff639141fbe33d22e12a9f75aa863b83b7046ffff1381927" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/96/15/4e623478a9628ad4cee2391f19aba0b16c1dd6fedcb2a399f0928097b597/beartype-0.18.5.tar.gz", hash = "sha256:264ddc2f1da9ec94ff639141fbe33d22e12a9f75aa863b83b7046ffff1381927", size = 1193506, upload-time = "2024-04-21T07:25:58.64Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/64/43/7a1259741bd989723272ac7d381a43be932422abcff09a1d9f7ba212cb74/beartype-0.18.5-py3-none-any.whl", hash = "sha256:5301a14f2a9a5540fe47ec6d34d758e9cd8331d36c4760fc7a5499ab86310089" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/64/43/7a1259741bd989723272ac7d381a43be932422abcff09a1d9f7ba212cb74/beartype-0.18.5-py3-none-any.whl", hash = "sha256:5301a14f2a9a5540fe47ec6d34d758e9cd8331d36c4760fc7a5499ab86310089", size = 917762, upload-time = "2024-04-21T07:25:55.758Z" },
]
[[package]]
name = "certifi"
version = "2025.4.26"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/e8/9e/c05b3920a3b7d20d3d3310465f50348e5b3694f4f88c6daf736eef3024c4/certifi-2025.4.26.tar.gz", hash = "sha256:0a816057ea3cdefcef70270d2c515e4506bbc954f417fa5ade2021213bb8f0c6" }
version = "2025.10.5"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/4c/5b/b6ce21586237c77ce67d01dc5507039d444b630dd76611bbca2d8e5dcd91/certifi-2025.10.5.tar.gz", hash = "sha256:47c09d31ccf2acf0be3f701ea53595ee7e0b8fa08801c6624be771df09ae7b43", size = 164519, upload-time = "2025-10-05T04:12:15.808Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/4a/7e/3db2bd1b1f9e95f7cddca6d6e75e2f2bd9f51b1246e546d88addca0106bd/certifi-2025.4.26-py3-none-any.whl", hash = "sha256:30350364dfe371162649852c63336a15c70c6510c2ad5015b21c2345311805f3" },
]
[[package]]
name = "chardet"
version = "5.2.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/f3/0d/f7b6ab21ec75897ed80c17d79b15951a719226b9fababf1e40ea74d69079/chardet-5.2.0.tar.gz", hash = "sha256:1b3b6ff479a8c414bc3fa2c0852995695c4a026dcd6d0633b2dd092ca39c1cf7" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/38/6f/f5fbc992a329ee4e0f288c1fe0e2ad9485ed064cac731ed2fe47dcc38cbf/chardet-5.2.0-py3-none-any.whl", hash = "sha256:e1cf59446890a00105fe7b7912492ea04b6e6f06d4b742b2c788469e34c82970" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e4/37/af0d2ef3967ac0d6113837b44a4f0bfe1328c2b9763bd5b1744520e5cfed/certifi-2025.10.5-py3-none-any.whl", hash = "sha256:0f212c2744a9bb6de0c56639a6f68afe01ecd92d91f14ae897c4fe7bbeeef0de", size = 163286, upload-time = "2025-10-05T04:12:14.03Z" },
]
[[package]]
name = "charset-normalizer"
version = "3.4.1"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/16/b0/572805e227f01586461c80e0fd25d65a2115599cc9dad142fee4b747c357/charset_normalizer-3.4.1.tar.gz", hash = "sha256:44251f18cd68a75b56585dd00dae26183e102cd5e0f9f1466e6df5da2ed64ea3" }
version = "3.4.4"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/13/69/33ddede1939fdd074bce5434295f38fae7136463422fe4fd3e0e89b98062/charset_normalizer-3.4.4.tar.gz", hash = "sha256:94537985111c35f28720e43603b8e7b43a6ecfb2ce1d3058bbe955b73404e21a", size = 129418, upload-time = "2025-10-14T04:42:32.879Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/0d/58/5580c1716040bc89206c77d8f74418caf82ce519aae06450393ca73475d1/charset_normalizer-3.4.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:91b36a978b5ae0ee86c394f5a54d6ef44db1de0815eb43de826d41d21e4af3de" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d0/11/00341177ae71c6f5159a08168bcb98c6e6d196d372c94511f9f6c9afe0c6/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7461baadb4dc00fd9e0acbe254e3d7d2112e7f92ced2adc96e54ef6501c5f176" },
{ url = "https://mirrors.aliyun.com/pypi/packages/01/09/11d684ea5819e5a8f5100fb0b38cf8d02b514746607934134d31233e02c8/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e218488cd232553829be0664c2292d3af2eeeb94b32bea483cf79ac6a694e037" },
{ url = "https://mirrors.aliyun.com/pypi/packages/08/06/9f5a12939db324d905dc1f70591ae7d7898d030d7662f0d426e2286f68c9/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:80ed5e856eb7f30115aaf94e4a08114ccc8813e6ed1b5efa74f9f82e8509858f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/93/62/5e89cdfe04584cb7f4d36003ffa2936681b03ecc0754f8e969c2becb7e24/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b010a7a4fd316c3c484d482922d13044979e78d1861f0e0650423144c616a46a" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a9/ac/ab729a15c516da2ab70a05f8722ecfccc3f04ed7a18e45c75bbbaa347d61/charset_normalizer-3.4.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4532bff1b8421fd0a320463030c7520f56a79c9024a4e88f01c537316019005a" },
{ url = "https://mirrors.aliyun.com/pypi/packages/03/d2/3f392f23f042615689456e9a274640c1d2e5dd1d52de36ab8f7955f8f050/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:d973f03c0cb71c5ed99037b870f2be986c3c05e63622c017ea9816881d2dd247" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f2/e3/e20aae5e1039a2cd9b08d9205f52142329f887f8cf70da3650326670bddf/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_i686.whl", hash = "sha256:3a3bd0dcd373514dcec91c411ddb9632c0d7d92aed7093b8c3bbb6d69ca74408" },
{ url = "https://mirrors.aliyun.com/pypi/packages/8d/af/779ad72a4da0aed925e1139d458adc486e61076d7ecdcc09e610ea8678db/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:d9c3cdf5390dcd29aa8056d13e8e99526cda0305acc038b96b30352aff5ff2bb" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c2/b6/7aa450b278e7aa92cf7732140bfd8be21f5f29d5bf334ae987c945276639/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:2bdfe3ac2e1bbe5b59a1a63721eb3b95fc9b6817ae4a46debbb4e11f6232428d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/39/f4/d9f4f712d0951dcbfd42920d3db81b00dd23b6ab520419626f4023334056/charset_normalizer-3.4.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:eab677309cdb30d047996b36d34caeda1dc91149e4fdca0b1a039b3f79d9a807" },
{ url = "https://mirrors.aliyun.com/pypi/packages/49/2b/999d0314e4ee0cff3cb83e6bc9aeddd397eeed693edb4facb901eb8fbb69/charset_normalizer-3.4.1-cp310-cp310-win32.whl", hash = "sha256:c0429126cf75e16c4f0ad00ee0eae4242dc652290f940152ca8c75c3a4b6ee8f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/2d/ce/3cbed41cff67e455a386fb5e5dd8906cdda2ed92fbc6297921f2e4419309/charset_normalizer-3.4.1-cp310-cp310-win_amd64.whl", hash = "sha256:9f0b8b1c6d84c8034a44893aba5e767bf9c7a211e313a9605d9c617d7083829f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/72/80/41ef5d5a7935d2d3a773e3eaebf0a9350542f2cab4eac59a7a4741fbbbbe/charset_normalizer-3.4.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8bfa33f4f2672964266e940dd22a195989ba31669bd84629f05fab3ef4e2d125" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7a/28/0b9fefa7b8b080ec492110af6d88aa3dea91c464b17d53474b6e9ba5d2c5/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:28bf57629c75e810b6ae989f03c0828d64d6b26a5e205535585f96093e405ed1" },
{ url = "https://mirrors.aliyun.com/pypi/packages/71/64/d24ab1a997efb06402e3fc07317e94da358e2585165930d9d59ad45fcae2/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:f08ff5e948271dc7e18a35641d2f11a4cd8dfd5634f55228b691e62b37125eb3" },
{ url = "https://mirrors.aliyun.com/pypi/packages/37/ed/be39e5258e198655240db5e19e0b11379163ad7070962d6b0c87ed2c4d39/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:234ac59ea147c59ee4da87a0c0f098e9c8d169f4dc2a159ef720f1a61bbe27cd" },
{ url = "https://mirrors.aliyun.com/pypi/packages/88/83/489e9504711fa05d8dde1574996408026bdbdbd938f23be67deebb5eca92/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fd4ec41f914fa74ad1b8304bbc634b3de73d2a0889bd32076342a573e0779e00" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c6/c7/32da20821cf387b759ad24627a9aca289d2822de929b8a41b6241767b461/charset_normalizer-3.4.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eea6ee1db730b3483adf394ea72f808b6e18cf3cb6454b4d86e04fa8c4327a12" },
{ url = "https://mirrors.aliyun.com/pypi/packages/68/85/f4288e96039abdd5aeb5c546fa20a37b50da71b5cf01e75e87f16cd43304/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:c96836c97b1238e9c9e3fe90844c947d5afbf4f4c92762679acfe19927d81d77" },
{ url = "https://mirrors.aliyun.com/pypi/packages/28/a3/a42e70d03cbdabc18997baf4f0227c73591a08041c149e710045c281f97b/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:4d86f7aff21ee58f26dcf5ae81a9addbd914115cdebcbb2217e4f0ed8982e146" },
{ url = "https://mirrors.aliyun.com/pypi/packages/85/e4/65699e8ab3014ecbe6f5c71d1a55d810fb716bbfd74f6283d5c2aa87febf/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:09b5e6733cbd160dcc09589227187e242a30a49ca5cefa5a7edd3f9d19ed53fd" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b1/82/8e9fe624cc5374193de6860aba3ea8070f584c8565ee77c168ec13274bd2/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:5777ee0881f9499ed0f71cc82cf873d9a0ca8af166dfa0af8ec4e675b7df48e6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/3d/7b/82865ba54c765560c8433f65e8acb9217cb839a9e32b42af4aa8e945870f/charset_normalizer-3.4.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:237bdbe6159cff53b4f24f397d43c6336c6b0b42affbe857970cefbb620911c8" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b5/b6/9674a4b7d4d99a0d2df9b215da766ee682718f88055751e1e5e753c82db0/charset_normalizer-3.4.1-cp311-cp311-win32.whl", hash = "sha256:8417cb1f36cc0bc7eaba8ccb0e04d55f0ee52df06df3ad55259b9a323555fc8b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/1e/ab/45b180e175de4402dcf7547e4fb617283bae54ce35c27930a6f35b6bef15/charset_normalizer-3.4.1-cp311-cp311-win_amd64.whl", hash = "sha256:d7f50a1f8c450f3925cb367d011448c39239bb3eb4117c36a6d354794de4ce76" },
{ url = "https://mirrors.aliyun.com/pypi/packages/0a/9a/dd1e1cdceb841925b7798369a09279bd1cf183cef0f9ddf15a3a6502ee45/charset_normalizer-3.4.1-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:73d94b58ec7fecbc7366247d3b0b10a21681004153238750bb67bd9012414545" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d3/8c/90bfabf8c4809ecb648f39794cf2a84ff2e7d2a6cf159fe68d9a26160467/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dad3e487649f498dd991eeb901125411559b22e8d7ab25d3aeb1af367df5efd7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ad/8f/e410d57c721945ea3b4f1a04b74f70ce8fa800d393d72899f0a40526401f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c30197aa96e8eed02200a83fba2657b4c3acd0f0aa4bdc9f6c1af8e8962e0757" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f0/b8/e6825e25deb691ff98cf5c9072ee0605dc2acfca98af70c2d1b1bc75190d/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2369eea1ee4a7610a860d88f268eb39b95cb588acd7235e02fd5a5601773d4fa" },
{ url = "https://mirrors.aliyun.com/pypi/packages/3e/a2/513f6cbe752421f16d969e32f3583762bfd583848b763913ddab8d9bfd4f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bc2722592d8998c870fa4e290c2eec2c1569b87fe58618e67d38b4665dfa680d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/74/94/8a5277664f27c3c438546f3eb53b33f5b19568eb7424736bdc440a88a31f/charset_normalizer-3.4.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffc9202a29ab3920fa812879e95a9e78b2465fd10be7fcbd042899695d75e616" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7c/5f/6d352c51ee763623a98e31194823518e09bfa48be2a7e8383cf691bbb3d0/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:804a4d582ba6e5b747c625bf1255e6b1507465494a40a2130978bda7b932c90b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/78/d4/f5704cb629ba5ab16d1d3d741396aec6dc3ca2b67757c45b0599bb010478/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:0f55e69f030f7163dffe9fd0752b32f070566451afe180f99dbeeb81f511ad8d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c5/96/64120b1d02b81785f222b976c0fb79a35875457fa9bb40827678e54d1bc8/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:c4c3e6da02df6fa1410a7680bd3f63d4f710232d3139089536310d027950696a" },
{ url = "https://mirrors.aliyun.com/pypi/packages/84/c9/98e3732278a99f47d487fd3468bc60b882920cef29d1fa6ca460a1fdf4e6/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:5df196eb874dae23dcfb968c83d4f8fdccb333330fe1fc278ac5ceeb101003a9" },
{ url = "https://mirrors.aliyun.com/pypi/packages/13/0e/9c8d4cb99c98c1007cc11eda969ebfe837bbbd0acdb4736d228ccaabcd22/charset_normalizer-3.4.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:e358e64305fe12299a08e08978f51fc21fac060dcfcddd95453eabe5b93ed0e1" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b2/21/2b6b5b860781a0b49427309cb8670785aa543fb2178de875b87b9cc97746/charset_normalizer-3.4.1-cp312-cp312-win32.whl", hash = "sha256:9b23ca7ef998bc739bf6ffc077c2116917eabcc901f88da1b9856b210ef63f35" },
{ url = "https://mirrors.aliyun.com/pypi/packages/21/5b/1b390b03b1d16c7e382b561c5329f83cc06623916aab983e8ab9239c7d5c/charset_normalizer-3.4.1-cp312-cp312-win_amd64.whl", hash = "sha256:6ff8a4a60c227ad87030d76e99cd1698345d4491638dfa6673027c48b3cd395f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/0e/f6/65ecc6878a89bb1c23a086ea335ad4bf21a588990c3f535a227b9eea9108/charset_normalizer-3.4.1-py3-none-any.whl", hash = "sha256:d98b1668f06378c6dbefec3b92299716b931cd4e6061f3c875a71ced1780ab85" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1f/b8/6d51fc1d52cbd52cd4ccedd5b5b2f0f6a11bbf6765c782298b0f3e808541/charset_normalizer-3.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e824f1492727fa856dd6eda4f7cee25f8518a12f3c4a56a74e8095695089cf6d", size = 209709, upload-time = "2025-10-14T04:40:11.385Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5c/af/1f9d7f7faafe2ddfb6f72a2e07a548a629c61ad510fe60f9630309908fef/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4bd5d4137d500351a30687c2d3971758aac9a19208fc110ccb9d7188fbe709e8", size = 148814, upload-time = "2025-10-14T04:40:13.135Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/79/3d/f2e3ac2bbc056ca0c204298ea4e3d9db9b4afe437812638759db2c976b5f/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:027f6de494925c0ab2a55eab46ae5129951638a49a34d87f4c3eda90f696b4ad", size = 144467, upload-time = "2025-10-14T04:40:14.728Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ec/85/1bf997003815e60d57de7bd972c57dc6950446a3e4ccac43bc3070721856/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f820802628d2694cb7e56db99213f930856014862f3fd943d290ea8438d07ca8", size = 162280, upload-time = "2025-10-14T04:40:16.14Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3e/8e/6aa1952f56b192f54921c436b87f2aaf7c7a7c3d0d1a765547d64fd83c13/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:798d75d81754988d2565bff1b97ba5a44411867c0cf32b77a7e8f8d84796b10d", size = 159454, upload-time = "2025-10-14T04:40:17.567Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/36/3b/60cbd1f8e93aa25d1c669c649b7a655b0b5fb4c571858910ea9332678558/charset_normalizer-3.4.4-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:9d1bb833febdff5c8927f922386db610b49db6e0d4f4ee29601d71e7c2694313", size = 153609, upload-time = "2025-10-14T04:40:19.08Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/64/91/6a13396948b8fd3c4b4fd5bc74d045f5637d78c9675585e8e9fbe5636554/charset_normalizer-3.4.4-cp310-cp310-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:9cd98cdc06614a2f768d2b7286d66805f94c48cde050acdbbb7db2600ab3197e", size = 151849, upload-time = "2025-10-14T04:40:20.607Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b7/7a/59482e28b9981d105691e968c544cc0df3b7d6133152fb3dcdc8f135da7a/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:077fbb858e903c73f6c9db43374fd213b0b6a778106bc7032446a8e8b5b38b93", size = 151586, upload-time = "2025-10-14T04:40:21.719Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/92/59/f64ef6a1c4bdd2baf892b04cd78792ed8684fbc48d4c2afe467d96b4df57/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:244bfb999c71b35de57821b8ea746b24e863398194a4014e4c76adc2bbdfeff0", size = 145290, upload-time = "2025-10-14T04:40:23.069Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6b/63/3bf9f279ddfa641ffa1962b0db6a57a9c294361cc2f5fcac997049a00e9c/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:64b55f9dce520635f018f907ff1b0df1fdc31f2795a922fb49dd14fbcdf48c84", size = 163663, upload-time = "2025-10-14T04:40:24.17Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ed/09/c9e38fc8fa9e0849b172b581fd9803bdf6e694041127933934184e19f8c3/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_riscv64.whl", hash = "sha256:faa3a41b2b66b6e50f84ae4a68c64fcd0c44355741c6374813a800cd6695db9e", size = 151964, upload-time = "2025-10-14T04:40:25.368Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d2/d1/d28b747e512d0da79d8b6a1ac18b7ab2ecfd81b2944c4c710e166d8dd09c/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:6515f3182dbe4ea06ced2d9e8666d97b46ef4c75e326b79bb624110f122551db", size = 161064, upload-time = "2025-10-14T04:40:26.806Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/bb/9a/31d62b611d901c3b9e5500c36aab0ff5eb442043fb3a1c254200d3d397d9/charset_normalizer-3.4.4-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cc00f04ed596e9dc0da42ed17ac5e596c6ccba999ba6bd92b0e0aef2f170f2d6", size = 155015, upload-time = "2025-10-14T04:40:28.284Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1f/f3/107e008fa2bff0c8b9319584174418e5e5285fef32f79d8ee6a430d0039c/charset_normalizer-3.4.4-cp310-cp310-win32.whl", hash = "sha256:f34be2938726fc13801220747472850852fe6b1ea75869a048d6f896838c896f", size = 99792, upload-time = "2025-10-14T04:40:29.613Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/eb/66/e396e8a408843337d7315bab30dbf106c38966f1819f123257f5520f8a96/charset_normalizer-3.4.4-cp310-cp310-win_amd64.whl", hash = "sha256:a61900df84c667873b292c3de315a786dd8dac506704dea57bc957bd31e22c7d", size = 107198, upload-time = "2025-10-14T04:40:30.644Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b5/58/01b4f815bf0312704c267f2ccb6e5d42bcc7752340cd487bc9f8c3710597/charset_normalizer-3.4.4-cp310-cp310-win_arm64.whl", hash = "sha256:cead0978fc57397645f12578bfd2d5ea9138ea0fac82b2f63f7f7c6877986a69", size = 100262, upload-time = "2025-10-14T04:40:32.108Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ed/27/c6491ff4954e58a10f69ad90aca8a1b6fe9c5d3c6f380907af3c37435b59/charset_normalizer-3.4.4-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:6e1fcf0720908f200cd21aa4e6750a48ff6ce4afe7ff5a79a90d5ed8a08296f8", size = 206988, upload-time = "2025-10-14T04:40:33.79Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/94/59/2e87300fe67ab820b5428580a53cad894272dbb97f38a7a814a2a1ac1011/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5f819d5fe9234f9f82d75bdfa9aef3a3d72c4d24a6e57aeaebba32a704553aa0", size = 147324, upload-time = "2025-10-14T04:40:34.961Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/07/fb/0cf61dc84b2b088391830f6274cb57c82e4da8bbc2efeac8c025edb88772/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:a59cb51917aa591b1c4e6a43c132f0cdc3c76dbad6155df4e28ee626cc77a0a3", size = 142742, upload-time = "2025-10-14T04:40:36.105Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/62/8b/171935adf2312cd745d290ed93cf16cf0dfe320863ab7cbeeae1dcd6535f/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:8ef3c867360f88ac904fd3f5e1f902f13307af9052646963ee08ff4f131adafc", size = 160863, upload-time = "2025-10-14T04:40:37.188Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/09/73/ad875b192bda14f2173bfc1bc9a55e009808484a4b256748d931b6948442/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d9e45d7faa48ee908174d8fe84854479ef838fc6a705c9315372eacbc2f02897", size = 157837, upload-time = "2025-10-14T04:40:38.435Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6d/fc/de9cce525b2c5b94b47c70a4b4fb19f871b24995c728e957ee68ab1671ea/charset_normalizer-3.4.4-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:840c25fb618a231545cbab0564a799f101b63b9901f2569faecd6b222ac72381", size = 151550, upload-time = "2025-10-14T04:40:40.053Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/55/c2/43edd615fdfba8c6f2dfbd459b25a6b3b551f24ea21981e23fb768503ce1/charset_normalizer-3.4.4-cp311-cp311-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:ca5862d5b3928c4940729dacc329aa9102900382fea192fc5e52eb69d6093815", size = 149162, upload-time = "2025-10-14T04:40:41.163Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/03/86/bde4ad8b4d0e9429a4e82c1e8f5c659993a9a863ad62c7df05cf7b678d75/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:d9c7f57c3d666a53421049053eaacdd14bbd0a528e2186fcb2e672effd053bb0", size = 150019, upload-time = "2025-10-14T04:40:42.276Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1f/86/a151eb2af293a7e7bac3a739b81072585ce36ccfb4493039f49f1d3cae8c/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:277e970e750505ed74c832b4bf75dac7476262ee2a013f5574dd49075879e161", size = 143310, upload-time = "2025-10-14T04:40:43.439Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b5/fe/43dae6144a7e07b87478fdfc4dbe9efd5defb0e7ec29f5f58a55aeef7bf7/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:31fd66405eaf47bb62e8cd575dc621c56c668f27d46a61d975a249930dd5e2a4", size = 162022, upload-time = "2025-10-14T04:40:44.547Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/80/e6/7aab83774f5d2bca81f42ac58d04caf44f0cc2b65fc6db2b3b2e8a05f3b3/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_riscv64.whl", hash = "sha256:0d3d8f15c07f86e9ff82319b3d9ef6f4bf907608f53fe9d92b28ea9ae3d1fd89", size = 149383, upload-time = "2025-10-14T04:40:46.018Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4f/e8/b289173b4edae05c0dde07f69f8db476a0b511eac556dfe0d6bda3c43384/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:9f7fcd74d410a36883701fafa2482a6af2ff5ba96b9a620e9e0721e28ead5569", size = 159098, upload-time = "2025-10-14T04:40:47.081Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d8/df/fe699727754cae3f8478493c7f45f777b17c3ef0600e28abfec8619eb49c/charset_normalizer-3.4.4-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:ebf3e58c7ec8a8bed6d66a75d7fb37b55e5015b03ceae72a8e7c74495551e224", size = 152991, upload-time = "2025-10-14T04:40:48.246Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1a/86/584869fe4ddb6ffa3bd9f491b87a01568797fb9bd8933f557dba9771beaf/charset_normalizer-3.4.4-cp311-cp311-win32.whl", hash = "sha256:eecbc200c7fd5ddb9a7f16c7decb07b566c29fa2161a16cf67b8d068bd21690a", size = 99456, upload-time = "2025-10-14T04:40:49.376Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/65/f6/62fdd5feb60530f50f7e38b4f6a1d5203f4d16ff4f9f0952962c044e919a/charset_normalizer-3.4.4-cp311-cp311-win_amd64.whl", hash = "sha256:5ae497466c7901d54b639cf42d5b8c1b6a4fead55215500d2f486d34db48d016", size = 106978, upload-time = "2025-10-14T04:40:50.844Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7a/9d/0710916e6c82948b3be62d9d398cb4fcf4e97b56d6a6aeccd66c4b2f2bd5/charset_normalizer-3.4.4-cp311-cp311-win_arm64.whl", hash = "sha256:65e2befcd84bc6f37095f5961e68a6f077bf44946771354a28ad434c2cce0ae1", size = 99969, upload-time = "2025-10-14T04:40:52.272Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0a98e6759f854bd25a58a73fa88833fba3b7c491169f86ce1180c948ab3fd394", size = 208425, upload-time = "2025-10-14T04:40:53.353Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/9d/6a/04130023fef2a0d9c62d0bae2649b69f7b7d8d24ea5536feef50551029df/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b5b290ccc2a263e8d185130284f8501e3e36c5e02750fc6b6bdeb2e9e96f1e25", size = 148162, upload-time = "2025-10-14T04:40:54.558Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/78/29/62328d79aa60da22c9e0b9a66539feae06ca0f5a4171ac4f7dc285b83688/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:74bb723680f9f7a6234dcf67aea57e708ec1fbdf5699fb91dfd6f511b0a320ef", size = 144558, upload-time = "2025-10-14T04:40:55.677Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/86/bb/b32194a4bf15b88403537c2e120b817c61cd4ecffa9b6876e941c3ee38fe/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f1e34719c6ed0b92f418c7c780480b26b5d9c50349e9a9af7d76bf757530350d", size = 161497, upload-time = "2025-10-14T04:40:57.217Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/19/89/a54c82b253d5b9b111dc74aca196ba5ccfcca8242d0fb64146d4d3183ff1/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:2437418e20515acec67d86e12bf70056a33abdacb5cb1655042f6538d6b085a8", size = 159240, upload-time = "2025-10-14T04:40:58.358Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11d694519d7f29d6cd09f6ac70028dba10f92f6cdd059096db198c283794ac86", size = 153471, upload-time = "2025-10-14T04:40:59.468Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/61/fa/fbf177b55bdd727010f9c0a3c49eefa1d10f960e5f09d1d887bf93c2e698/charset_normalizer-3.4.4-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:ac1c4a689edcc530fc9d9aa11f5774b9e2f33f9a0c6a57864e90908f5208d30a", size = 150864, upload-time = "2025-10-14T04:41:00.623Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/05/12/9fbc6a4d39c0198adeebbde20b619790e9236557ca59fc40e0e3cebe6f40/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:21d142cc6c0ec30d2efee5068ca36c128a30b0f2c53c1c07bd78cb6bc1d3be5f", size = 150647, upload-time = "2025-10-14T04:41:01.754Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ad/1f/6a9a593d52e3e8c5d2b167daf8c6b968808efb57ef4c210acb907c365bc4/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:5dbe56a36425d26d6cfb40ce79c314a2e4dd6211d51d6d2191c00bed34f354cc", size = 145110, upload-time = "2025-10-14T04:41:03.231Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/30/42/9a52c609e72471b0fc54386dc63c3781a387bb4fe61c20231a4ebcd58bdd/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5bfbb1b9acf3334612667b61bd3002196fe2a1eb4dd74d247e0f2a4d50ec9bbf", size = 162839, upload-time = "2025-10-14T04:41:04.715Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c4/5b/c0682bbf9f11597073052628ddd38344a3d673fda35a36773f7d19344b23/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:d055ec1e26e441f6187acf818b73564e6e6282709e9bcb5b63f5b23068356a15", size = 150667, upload-time = "2025-10-14T04:41:05.827Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e4/24/a41afeab6f990cf2daf6cb8c67419b63b48cf518e4f56022230840c9bfb2/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:af2d8c67d8e573d6de5bc30cdb27e9b95e49115cd9baad5ddbd1a6207aaa82a9", size = 160535, upload-time = "2025-10-14T04:41:06.938Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2a/e5/6a4ce77ed243c4a50a1fecca6aaaab419628c818a49434be428fe24c9957/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:780236ac706e66881f3b7f2f32dfe90507a09e67d1d454c762cf642e6e1586e0", size = 154816, upload-time = "2025-10-14T04:41:08.101Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a8/ef/89297262b8092b312d29cdb2517cb1237e51db8ecef2e9af5edbe7b683b1/charset_normalizer-3.4.4-cp312-cp312-win32.whl", hash = "sha256:5833d2c39d8896e4e19b689ffc198f08ea58116bee26dea51e362ecc7cd3ed26", size = 99694, upload-time = "2025-10-14T04:41:09.23Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3d/2d/1e5ed9dd3b3803994c155cd9aacb60c82c331bad84daf75bcb9c91b3295e/charset_normalizer-3.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:a79cfe37875f822425b89a82333404539ae63dbdddf97f84dcbc3d339aae9525", size = 107131, upload-time = "2025-10-14T04:41:10.467Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d0/d9/0ed4c7098a861482a7b6a95603edce4c0d9db2311af23da1fb2b75ec26fc/charset_normalizer-3.4.4-cp312-cp312-win_arm64.whl", hash = "sha256:376bec83a63b8021bb5c8ea75e21c4ccb86e7e45ca4eb81146091b56599b80c3", size = 100390, upload-time = "2025-10-14T04:41:11.915Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0a/4c/925909008ed5a988ccbb72dcc897407e5d6d3bd72410d69e051fc0c14647/charset_normalizer-3.4.4-py3-none-any.whl", hash = "sha256:7a32c560861a02ff789ad905a2fe94e3f840803362c84fecf1851cb4cf3dc37f", size = 53402, upload-time = "2025-10-14T04:42:31.76Z" },
]
[[package]]
name = "colorama"
version = "0.4.6"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" },
]
[[package]]
name = "et-xmlfile"
version = "2.0.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/d3/38/af70d7ab1ae9d4da450eeec1fa3918940a5fafb9055e934af8d6eb0c2313/et_xmlfile-2.0.0.tar.gz", hash = "sha256:dab3f4764309081ce75662649be815c4c9081e88f0837825f90fd28317d4da54" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/d3/38/af70d7ab1ae9d4da450eeec1fa3918940a5fafb9055e934af8d6eb0c2313/et_xmlfile-2.0.0.tar.gz", hash = "sha256:dab3f4764309081ce75662649be815c4c9081e88f0837825f90fd28317d4da54", size = 17234, upload-time = "2024-10-25T17:25:40.039Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl", hash = "sha256:7a91720bc756843502c3b7504c77b8fe44217c85c537d85037f0f536151b2caa" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl", hash = "sha256:7a91720bc756843502c3b7504c77b8fe44217c85c537d85037f0f536151b2caa", size = 18059, upload-time = "2024-10-25T17:25:39.051Z" },
]
[[package]]
name = "exceptiongroup"
version = "1.2.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/09/35/2495c4ac46b980e4ca1f6ad6db102322ef3ad2410b79fdde159a4b0f3b92/exceptiongroup-1.2.2.tar.gz", hash = "sha256:47c2edf7c6738fafb49fd34290706d1a1a2f4d1c6df275526b62cbb4aa5393cc" }
version = "1.3.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "typing-extensions" },
]
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/0b/9f/a65090624ecf468cdca03533906e7c69ed7588582240cfe7cc9e770b50eb/exceptiongroup-1.3.0.tar.gz", hash = "sha256:b241f5885f560bc56a59ee63ca4c6a8bfa46ae4ad651af316d4e81817bb9fd88", size = 29749, upload-time = "2025-05-10T17:42:51.123Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/02/cc/b7e31358aac6ed1ef2bb790a9746ac2c69bcb3c8588b41616914eb106eaf/exceptiongroup-1.2.2-py3-none-any.whl", hash = "sha256:3111b9d131c238bec2f8f516e123e14ba243563fb135d3fe885990585aa7795b" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/36/f4/c6e662dade71f56cd2f3735141b265c3c79293c109549c1e6933b0651ffc/exceptiongroup-1.3.0-py3-none-any.whl", hash = "sha256:4d111e6e0c13d0644cad6ddaa7ed0261a0b36971f6d23e7ec9b4b9097da78a10", size = 16674, upload-time = "2025-05-10T17:42:49.33Z" },
]
[[package]]
name = "hypothesis"
version = "6.131.9"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
version = "6.142.3"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "attrs" },
{ name = "exceptiongroup", marker = "python_full_version < '3.11'" },
{ name = "sortedcontainers" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/10/ff/217417d065aa8a4e6815ddc39acee1222f1b67bd0e4803b85de86a837873/hypothesis-6.131.9.tar.gz", hash = "sha256:ee9b0e1403e1121c91921dbdc79d7f509fdb96d457a0389222d2a68d6c8a8f8e" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/e8/c9/03b5177dcd0224338c9ef63890bc52c0b0fbc86fba7c2c8a8523c0f02833/hypothesis-6.142.3.tar.gz", hash = "sha256:f1aaf83f6cc0c50f1b61e167974a8a67377dce13e0ea628b67a83f574ef30b85", size = 466042, upload-time = "2025-10-22T19:22:16.689Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/bd/e5/41a6733bfe11997795669dec3b3d785c28918e06568a2540dcc29f0d3fa7/hypothesis-6.131.9-py3-none-any.whl", hash = "sha256:7c2d9d6382e98e5337b27bd34e5b223bac23956787a827e1d087e00d893561d6" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/28/42/7422624c9079865a094e3e13014ecf21f07f07b190df09e1feaaaa687891/hypothesis-6.142.3-py3-none-any.whl", hash = "sha256:2fc19a2824c9bdc3f8e39d87861fbdf1d766982b20d54646a642bce82bcac179", size = 533464, upload-time = "2025-10-22T19:22:13.051Z" },
]
[[package]]
name = "idna"
version = "3.10"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9" }
version = "3.11"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/6f/6d/0703ccc57f3a7233505399edb88de3cbd678da106337b9fcde432b65ed60/idna-3.11.tar.gz", hash = "sha256:795dafcc9c04ed0c1fb032c2aa73654d8e8c5023a7df64a53f39190ada629902", size = 194582, upload-time = "2025-10-12T14:55:20.501Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl", hash = "sha256:771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea", size = 71008, upload-time = "2025-10-12T14:55:18.883Z" },
]
[[package]]
name = "iniconfig"
version = "2.1.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/f2/97/ebf4da567aa6827c909642694d71c9fcf53e5b504f2d96afea02718862f3/iniconfig-2.1.0.tar.gz", hash = "sha256:3abbd2e30b36733fee78f9c7f7308f2d0050e88f0087fd25c2645f63c773e1c7" }
version = "2.3.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/72/34/14ca021ce8e5dfedc35312d08ba8bf51fdd999c576889fc2c24cb97f4f10/iniconfig-2.3.0.tar.gz", hash = "sha256:c76315c77db068650d49c5b56314774a7804df16fee4402c1f19d6d15d8c4730", size = 20503, upload-time = "2025-10-18T21:55:43.219Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl", hash = "sha256:f631c04d2c48c52b84d0d0549c99ff3859c98df65b3101406327ecc7d53fbf12", size = 7484, upload-time = "2025-10-18T21:55:41.639Z" },
]
[[package]]
name = "lxml"
version = "5.4.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/76/3d/14e82fc7c8fb1b7761f7e748fd47e2ec8276d137b6acfe5a4bb73853e08f/lxml-5.4.0.tar.gz", hash = "sha256:d12832e1dbea4be280b22fd0ea7c9b87f0d8fc51ba06e92dc62d52f804f78ebd" }
version = "6.0.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/aa/88/262177de60548e5a2bfc46ad28232c9e9cbde697bd94132aeb80364675cb/lxml-6.0.2.tar.gz", hash = "sha256:cd79f3367bd74b317dda655dc8fcfa304d9eb6e4fb06b7168c5cf27f96e0cd62", size = 4073426, upload-time = "2025-09-22T04:04:59.287Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/f5/1f/a3b6b74a451ceb84b471caa75c934d2430a4d84395d38ef201d539f38cd1/lxml-5.4.0-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e7bc6df34d42322c5289e37e9971d6ed114e3776b45fa879f734bded9d1fea9c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/36/af/a567a55b3e47135b4d1f05a1118c24529104c003f95851374b3748139dc1/lxml-5.4.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6854f8bd8a1536f8a1d9a3655e6354faa6406621cf857dc27b681b69860645c7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/50/ba/4ee47d24c675932b3eb5b6de77d0f623c2db6dc466e7a1f199792c5e3e3a/lxml-5.4.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:696ea9e87442467819ac22394ca36cb3d01848dad1be6fac3fb612d3bd5a12cf" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f2/0f/b4db6dfebfefe3abafe360f42a3d471881687fd449a0b86b70f1f2683438/lxml-5.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ef80aeac414f33c24b3815ecd560cee272786c3adfa5f31316d8b349bfade28" },
{ url = "https://mirrors.aliyun.com/pypi/packages/0b/1f/0bb1bae1ce056910f8db81c6aba80fec0e46c98d77c0f59298c70cd362a3/lxml-5.4.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b9c2754cef6963f3408ab381ea55f47dabc6f78f4b8ebb0f0b25cf1ac1f7609" },
{ url = "https://mirrors.aliyun.com/pypi/packages/21/f5/e7b66a533fc4a1e7fa63dd22a1ab2ec4d10319b909211181e1ab3e539295/lxml-5.4.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7a62cc23d754bb449d63ff35334acc9f5c02e6dae830d78dab4dd12b78a524f4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/11/39/a38244b669c2d95a6a101a84d3c85ba921fea827e9e5483e93168bf1ccb2/lxml-5.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f82125bc7203c5ae8633a7d5d20bcfdff0ba33e436e4ab0abc026a53a8960b7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/db/64/48cac242347a09a07740d6cee7b7fd4663d5c1abd65f2e3c60420e231b27/lxml-5.4.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:b67319b4aef1a6c56576ff544b67a2a6fbd7eaee485b241cabf53115e8908b8f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/98/89/97442835fbb01d80b72374f9594fe44f01817d203fa056e9906128a5d896/lxml-5.4.0-cp310-cp310-manylinux_2_28_ppc64le.whl", hash = "sha256:a8ef956fce64c8551221f395ba21d0724fed6b9b6242ca4f2f7beb4ce2f41997" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f1/97/164ca398ee654eb21f29c6b582685c6c6b9d62d5213abc9b8380278e9c0a/lxml-5.4.0-cp310-cp310-manylinux_2_28_s390x.whl", hash = "sha256:0a01ce7d8479dce84fc03324e3b0c9c90b1ece9a9bb6a1b6c9025e7e4520e78c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d0/bc/712b96823d7feb53482d2e4f59c090fb18ec7b0d0b476f353b3085893cda/lxml-5.4.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:91505d3ddebf268bb1588eb0f63821f738d20e1e7f05d3c647a5ca900288760b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d4/55/a62a39e8f9da2a8b6002603475e3c57c870cd9c95fd4b94d4d9ac9036055/lxml-5.4.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:a3bcdde35d82ff385f4ede021df801b5c4a5bcdfb61ea87caabcebfc4945dc1b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ea/47/a393728ae001b92bb1a9e095e570bf71ec7f7fbae7688a4792222e56e5b9/lxml-5.4.0-cp310-cp310-musllinux_1_2_ppc64le.whl", hash = "sha256:aea7c06667b987787c7d1f5e1dfcd70419b711cdb47d6b4bb4ad4b76777a0563" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5e/5f/9dcaaad037c3e642a7ea64b479aa082968de46dd67a8293c541742b6c9db/lxml-5.4.0-cp310-cp310-musllinux_1_2_s390x.whl", hash = "sha256:a7fb111eef4d05909b82152721a59c1b14d0f365e2be4c742a473c5d7372f4f5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a7/0a/ebcae89edf27e61c45023005171d0ba95cb414ee41c045ae4caf1b8487fd/lxml-5.4.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:43d549b876ce64aa18b2328faff70f5877f8c6dede415f80a2f799d31644d776" },
{ url = "https://mirrors.aliyun.com/pypi/packages/42/ad/cc8140ca99add7d85c92db8b2354638ed6d5cc0e917b21d36039cb15a238/lxml-5.4.0-cp310-cp310-win32.whl", hash = "sha256:75133890e40d229d6c5837b0312abbe5bac1c342452cf0e12523477cd3aa21e7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e9/39/597ce090da1097d2aabd2f9ef42187a6c9c8546d67c419ce61b88b336c85/lxml-5.4.0-cp310-cp310-win_amd64.whl", hash = "sha256:de5b4e1088523e2b6f730d0509a9a813355b7f5659d70eb4f319c76beea2e250" },
{ url = "https://mirrors.aliyun.com/pypi/packages/81/2d/67693cc8a605a12e5975380d7ff83020dcc759351b5a066e1cced04f797b/lxml-5.4.0-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:98a3912194c079ef37e716ed228ae0dcb960992100461b704aea4e93af6b0bb9" },
{ url = "https://mirrors.aliyun.com/pypi/packages/73/53/b5a05ab300a808b72e848efd152fe9c022c0181b0a70b8bca1199f1bed26/lxml-5.4.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:0ea0252b51d296a75f6118ed0d8696888e7403408ad42345d7dfd0d1e93309a7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d8/cb/1a3879c5f512bdcd32995c301886fe082b2edd83c87d41b6d42d89b4ea4d/lxml-5.4.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b92b69441d1bd39f4940f9eadfa417a25862242ca2c396b406f9272ef09cdcaa" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f9/94/bbc66e42559f9d04857071e3b3d0c9abd88579367fd2588a4042f641f57e/lxml-5.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:20e16c08254b9b6466526bc1828d9370ee6c0d60a4b64836bc3ac2917d1e16df" },
{ url = "https://mirrors.aliyun.com/pypi/packages/66/95/34b0679bee435da2d7cae895731700e519a8dfcab499c21662ebe671603e/lxml-5.4.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7605c1c32c3d6e8c990dd28a0970a3cbbf1429d5b92279e37fda05fb0c92190e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e0/5d/abfcc6ab2fa0be72b2ba938abdae1f7cad4c632f8d552683ea295d55adfb/lxml-5.4.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:ecf4c4b83f1ab3d5a7ace10bafcb6f11df6156857a3c418244cef41ca9fa3e44" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5a/78/6bd33186c8863b36e084f294fc0a5e5eefe77af95f0663ef33809cc1c8aa/lxml-5.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0cef4feae82709eed352cd7e97ae062ef6ae9c7b5dbe3663f104cd2c0e8d94ba" },
{ url = "https://mirrors.aliyun.com/pypi/packages/3b/74/4d7ad4839bd0fc64e3d12da74fc9a193febb0fae0ba6ebd5149d4c23176a/lxml-5.4.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:df53330a3bff250f10472ce96a9af28628ff1f4efc51ccba351a8820bca2a8ba" },
{ url = "https://mirrors.aliyun.com/pypi/packages/24/0d/0a98ed1f2471911dadfc541003ac6dd6879fc87b15e1143743ca20f3e973/lxml-5.4.0-cp311-cp311-manylinux_2_28_ppc64le.whl", hash = "sha256:aefe1a7cb852fa61150fcb21a8c8fcea7b58c4cb11fbe59c97a0a4b31cae3c8c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/48/de/d4f7e4c39740a6610f0f6959052b547478107967362e8424e1163ec37ae8/lxml-5.4.0-cp311-cp311-manylinux_2_28_s390x.whl", hash = "sha256:ef5a7178fcc73b7d8c07229e89f8eb45b2908a9238eb90dcfc46571ccf0383b8" },
{ url = "https://mirrors.aliyun.com/pypi/packages/07/8c/61763abd242af84f355ca4ef1ee096d3c1b7514819564cce70fd18c22e9a/lxml-5.4.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:d2ed1b3cb9ff1c10e6e8b00941bb2e5bb568b307bfc6b17dffbbe8be5eecba86" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f9/c5/6d7e3b63e7e282619193961a570c0a4c8a57fe820f07ca3fe2f6bd86608a/lxml-5.4.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:72ac9762a9f8ce74c9eed4a4e74306f2f18613a6b71fa065495a67ac227b3056" },
{ url = "https://mirrors.aliyun.com/pypi/packages/71/4a/e60a306df54680b103348545706a98a7514a42c8b4fbfdcaa608567bb065/lxml-5.4.0-cp311-cp311-musllinux_1_2_ppc64le.whl", hash = "sha256:f5cb182f6396706dc6cc1896dd02b1c889d644c081b0cdec38747573db88a7d7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/27/f2/9754aacd6016c930875854f08ac4b192a47fe19565f776a64004aa167521/lxml-5.4.0-cp311-cp311-musllinux_1_2_s390x.whl", hash = "sha256:3a3178b4873df8ef9457a4875703488eb1622632a9cee6d76464b60e90adbfcd" },
{ url = "https://mirrors.aliyun.com/pypi/packages/38/a2/0c49ec6941428b1bd4f280650d7b11a0f91ace9db7de32eb7aa23bcb39ff/lxml-5.4.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:e094ec83694b59d263802ed03a8384594fcce477ce484b0cbcd0008a211ca751" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7a/75/87a3963a08eafc46a86c1131c6e28a4de103ba30b5ae903114177352a3d7/lxml-5.4.0-cp311-cp311-win32.whl", hash = "sha256:4329422de653cdb2b72afa39b0aa04252fca9071550044904b2e7036d9d97fe4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/fa/f9/1f0964c4f6c2be861c50db380c554fb8befbea98c6404744ce243a3c87ef/lxml-5.4.0-cp311-cp311-win_amd64.whl", hash = "sha256:fd3be6481ef54b8cfd0e1e953323b7aa9d9789b94842d0e5b142ef4bb7999539" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f8/4c/d101ace719ca6a4ec043eb516fcfcb1b396a9fccc4fcd9ef593df34ba0d5/lxml-5.4.0-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:b5aff6f3e818e6bdbbb38e5967520f174b18f539c2b9de867b1e7fde6f8d95a4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/11/84/beddae0cec4dd9ddf46abf156f0af451c13019a0fa25d7445b655ba5ccb7/lxml-5.4.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:942a5d73f739ad7c452bf739a62a0f83e2578afd6b8e5406308731f4ce78b16d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d0/25/d0d93a4e763f0462cccd2b8a665bf1e4343dd788c76dcfefa289d46a38a9/lxml-5.4.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:460508a4b07364d6abf53acaa0a90b6d370fafde5693ef37602566613a9b0779" },
{ url = "https://mirrors.aliyun.com/pypi/packages/31/ce/1df18fb8f7946e7f3388af378b1f34fcf253b94b9feedb2cec5969da8012/lxml-5.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:529024ab3a505fed78fe3cc5ddc079464e709f6c892733e3f5842007cec8ac6e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/4e/62/f4a6c60ae7c40d43657f552f3045df05118636be1165b906d3423790447f/lxml-5.4.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:7ca56ebc2c474e8f3d5761debfd9283b8b18c76c4fc0967b74aeafba1f5647f9" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9e/aa/04f00009e1e3a77838c7fc948f161b5d2d5de1136b2b81c712a263829ea4/lxml-5.4.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a81e1196f0a5b4167a8dafe3a66aa67c4addac1b22dc47947abd5d5c7a3f24b5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c9/1f/e0b2f61fa2404bf0f1fdf1898377e5bd1b74cc9b2cf2c6ba8509b8f27990/lxml-5.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:00b8686694423ddae324cf614e1b9659c2edb754de617703c3d29ff568448df5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/24/a2/8263f351b4ffe0ed3e32ea7b7830f845c795349034f912f490180d88a877/lxml-5.4.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:c5681160758d3f6ac5b4fea370495c48aac0989d6a0f01bb9a72ad8ef5ab75c4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/05/00/41db052f279995c0e35c79d0f0fc9f8122d5b5e9630139c592a0b58c71b4/lxml-5.4.0-cp312-cp312-manylinux_2_28_ppc64le.whl", hash = "sha256:2dc191e60425ad70e75a68c9fd90ab284df64d9cd410ba8d2b641c0c45bc006e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/1d/be/ee99e6314cdef4587617d3b3b745f9356d9b7dd12a9663c5f3b5734b64ba/lxml-5.4.0-cp312-cp312-manylinux_2_28_s390x.whl", hash = "sha256:67f779374c6b9753ae0a0195a892a1c234ce8416e4448fe1e9f34746482070a7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ad/36/239820114bf1d71f38f12208b9c58dec033cbcf80101cde006b9bde5cffd/lxml-5.4.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:79d5bfa9c1b455336f52343130b2067164040604e41f6dc4d8313867ed540079" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d4/e1/1b795cc0b174efc9e13dbd078a9ff79a58728a033142bc6d70a1ee8fc34d/lxml-5.4.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3d3c30ba1c9b48c68489dc1829a6eede9873f52edca1dda900066542528d6b20" },
{ url = "https://mirrors.aliyun.com/pypi/packages/72/48/3c198455ca108cec5ae3662ae8acd7fd99476812fd712bb17f1b39a0b589/lxml-5.4.0-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:1af80c6316ae68aded77e91cd9d80648f7dd40406cef73df841aa3c36f6907c8" },
{ url = "https://mirrors.aliyun.com/pypi/packages/d6/10/5bf51858971c51ec96cfc13e800a9951f3fd501686f4c18d7d84fe2d6352/lxml-5.4.0-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:4d885698f5019abe0de3d352caf9466d5de2baded00a06ef3f1216c1a58ae78f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/2b/11/06710dd809205377da380546f91d2ac94bad9ff735a72b64ec029f706c85/lxml-5.4.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:aea53d51859b6c64e7c51d522c03cc2c48b9b5d6172126854cc7f01aa11f52bc" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f5/b0/15b6217834b5e3a59ebf7f53125e08e318030e8cc0d7310355e6edac98ef/lxml-5.4.0-cp312-cp312-win32.whl", hash = "sha256:d90b729fd2732df28130c064aac9bb8aff14ba20baa4aee7bd0795ff1187545f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/91/1e/05ddcb57ad2f3069101611bd5f5084157d90861a2ef460bf42f45cced944/lxml-5.4.0-cp312-cp312-win_amd64.whl", hash = "sha256:1dc4ca99e89c335a7ed47d38964abcb36c5910790f9bd106f2a8fa2ee0b909d2" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c6/b0/e4d1cbb8c078bc4ae44de9c6a79fec4e2b4151b1b4d50af71d799e76b177/lxml-5.4.0-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1b717b00a71b901b4667226bba282dd462c42ccf618ade12f9ba3674e1fabc55" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5b/aa/e2bdefba40d815059bcb60b371a36fbfcce970a935370e1b367ba1cc8f74/lxml-5.4.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:27a9ded0f0b52098ff89dd4c418325b987feed2ea5cc86e8860b0f844285d740" },
{ url = "https://mirrors.aliyun.com/pypi/packages/3c/5f/91ff89d1e092e7cfdd8453a939436ac116db0a665e7f4be0cd8e65c7dc5a/lxml-5.4.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b7ce10634113651d6f383aa712a194179dcd496bd8c41e191cec2099fa09de5" },
{ url = "https://mirrors.aliyun.com/pypi/packages/be/7c/8c3f15df2ca534589717bfd19d1e3482167801caedfa4d90a575facf68a6/lxml-5.4.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:53370c26500d22b45182f98847243efb518d268374a9570409d2e2276232fd37" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7d/d8/9567afb1665f64d73fc54eb904e418d1138d7f011ed00647121b4dd60b38/lxml-5.4.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:c6364038c519dffdbe07e3cf42e6a7f8b90c275d4d1617a69bb59734c1a2d571" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f1/ab/fdbbd91d8d82bf1a723ba88ec3e3d76c022b53c391b0c13cad441cdb8f9e/lxml-5.4.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:b12cb6527599808ada9eb2cd6e0e7d3d8f13fe7bbb01c6311255a15ded4c7ab4" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/db/8a/f8192a08237ef2fb1b19733f709db88a4c43bc8ab8357f01cb41a27e7f6a/lxml-6.0.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e77dd455b9a16bbd2a5036a63ddbd479c19572af81b624e79ef422f929eef388", size = 8590589, upload-time = "2025-09-22T04:00:10.51Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/12/64/27bcd07ae17ff5e5536e8d88f4c7d581b48963817a13de11f3ac3329bfa2/lxml-6.0.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5d444858b9f07cefff6455b983aea9a67f7462ba1f6cbe4a21e8bf6791bf2153", size = 4629671, upload-time = "2025-09-22T04:00:15.411Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/02/5a/a7d53b3291c324e0b6e48f3c797be63836cc52156ddf8f33cd72aac78866/lxml-6.0.2-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:f952dacaa552f3bb8834908dddd500ba7d508e6ea6eb8c52eb2d28f48ca06a31", size = 4999961, upload-time = "2025-09-22T04:00:17.619Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f5/55/d465e9b89df1761674d8672bb3e4ae2c47033b01ec243964b6e334c6743f/lxml-6.0.2-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:71695772df6acea9f3c0e59e44ba8ac50c4f125217e84aab21074a1a55e7e5c9", size = 5157087, upload-time = "2025-09-22T04:00:19.868Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/62/38/3073cd7e3e8dfc3ba3c3a139e33bee3a82de2bfb0925714351ad3d255c13/lxml-6.0.2-cp310-cp310-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:17f68764f35fd78d7c4cc4ef209a184c38b65440378013d24b8aecd327c3e0c8", size = 5067620, upload-time = "2025-09-22T04:00:21.877Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4a/d3/1e001588c5e2205637b08985597827d3827dbaaece16348c8822bfe61c29/lxml-6.0.2-cp310-cp310-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:058027e261afed589eddcfe530fcc6f3402d7fd7e89bfd0532df82ebc1563dba", size = 5406664, upload-time = "2025-09-22T04:00:23.714Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/20/cf/cab09478699b003857ed6ebfe95e9fb9fa3d3c25f1353b905c9b73cfb624/lxml-6.0.2-cp310-cp310-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a8ffaeec5dfea5881d4c9d8913a32d10cfe3923495386106e4a24d45300ef79c", size = 5289397, upload-time = "2025-09-22T04:00:25.544Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a3/84/02a2d0c38ac9a8b9f9e5e1bbd3f24b3f426044ad618b552e9549ee91bd63/lxml-6.0.2-cp310-cp310-manylinux_2_31_armv7l.whl", hash = "sha256:f2e3b1a6bb38de0bc713edd4d612969dd250ca8b724be8d460001a387507021c", size = 4772178, upload-time = "2025-09-22T04:00:27.602Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/56/87/e1ceadcc031ec4aa605fe95476892d0b0ba3b7f8c7dcdf88fdeff59a9c86/lxml-6.0.2-cp310-cp310-manylinux_2_38_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:d6690ec5ec1cce0385cb20896b16be35247ac8c2046e493d03232f1c2414d321", size = 5358148, upload-time = "2025-09-22T04:00:29.323Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fe/13/5bb6cf42bb228353fd4ac5f162c6a84fd68a4d6f67c1031c8cf97e131fc6/lxml-6.0.2-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:f2a50c3c1d11cad0ebebbac357a97b26aa79d2bcaf46f256551152aa85d3a4d1", size = 5112035, upload-time = "2025-09-22T04:00:31.061Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e4/e2/ea0498552102e59834e297c5c6dff8d8ded3db72ed5e8aad77871476f073/lxml-6.0.2-cp310-cp310-musllinux_1_2_armv7l.whl", hash = "sha256:3efe1b21c7801ffa29a1112fab3b0f643628c30472d507f39544fd48e9549e34", size = 4799111, upload-time = "2025-09-22T04:00:33.11Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6a/9e/8de42b52a73abb8af86c66c969b3b4c2a96567b6ac74637c037d2e3baa60/lxml-6.0.2-cp310-cp310-musllinux_1_2_riscv64.whl", hash = "sha256:59c45e125140b2c4b33920d21d83681940ca29f0b83f8629ea1a2196dc8cfe6a", size = 5351662, upload-time = "2025-09-22T04:00:35.237Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/28/a2/de776a573dfb15114509a37351937c367530865edb10a90189d0b4b9b70a/lxml-6.0.2-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:452b899faa64f1805943ec1c0c9ebeaece01a1af83e130b69cdefeda180bb42c", size = 5314973, upload-time = "2025-09-22T04:00:37.086Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/50/a0/3ae1b1f8964c271b5eec91db2043cf8c6c0bce101ebb2a633b51b044db6c/lxml-6.0.2-cp310-cp310-win32.whl", hash = "sha256:1e786a464c191ca43b133906c6903a7e4d56bef376b75d97ccbb8ec5cf1f0a4b", size = 3611953, upload-time = "2025-09-22T04:00:39.224Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d1/70/bd42491f0634aad41bdfc1e46f5cff98825fb6185688dc82baa35d509f1a/lxml-6.0.2-cp310-cp310-win_amd64.whl", hash = "sha256:dacf3c64ef3f7440e3167aa4b49aa9e0fb99e0aa4f9ff03795640bf94531bcb0", size = 4032695, upload-time = "2025-09-22T04:00:41.402Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d2/d0/05c6a72299f54c2c561a6c6cbb2f512e047fca20ea97a05e57931f194ac4/lxml-6.0.2-cp310-cp310-win_arm64.whl", hash = "sha256:45f93e6f75123f88d7f0cfd90f2d05f441b808562bf0bc01070a00f53f5028b5", size = 3680051, upload-time = "2025-09-22T04:00:43.525Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/77/d5/becbe1e2569b474a23f0c672ead8a29ac50b2dc1d5b9de184831bda8d14c/lxml-6.0.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:13e35cbc684aadf05d8711a5d1b5857c92e5e580efa9a0d2be197199c8def607", size = 8634365, upload-time = "2025-09-22T04:00:45.672Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/28/66/1ced58f12e804644426b85d0bb8a4478ca77bc1761455da310505f1a3526/lxml-6.0.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3b1675e096e17c6fe9c0e8c81434f5736c0739ff9ac6123c87c2d452f48fc938", size = 4650793, upload-time = "2025-09-22T04:00:47.783Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/11/84/549098ffea39dfd167e3f174b4ce983d0eed61f9d8d25b7bf2a57c3247fc/lxml-6.0.2-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:8ac6e5811ae2870953390452e3476694196f98d447573234592d30488147404d", size = 4944362, upload-time = "2025-09-22T04:00:49.845Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ac/bd/f207f16abf9749d2037453d56b643a7471d8fde855a231a12d1e095c4f01/lxml-6.0.2-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5aa0fc67ae19d7a64c3fe725dc9a1bb11f80e01f78289d05c6f62545affec438", size = 5083152, upload-time = "2025-09-22T04:00:51.709Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/15/ae/bd813e87d8941d52ad5b65071b1affb48da01c4ed3c9c99e40abb266fbff/lxml-6.0.2-cp311-cp311-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:de496365750cc472b4e7902a485d3f152ecf57bd3ba03ddd5578ed8ceb4c5964", size = 5023539, upload-time = "2025-09-22T04:00:53.593Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/02/cd/9bfef16bd1d874fbe0cb51afb00329540f30a3283beb9f0780adbb7eec03/lxml-6.0.2-cp311-cp311-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:200069a593c5e40b8f6fc0d84d86d970ba43138c3e68619ffa234bc9bb806a4d", size = 5344853, upload-time = "2025-09-22T04:00:55.524Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b8/89/ea8f91594bc5dbb879734d35a6f2b0ad50605d7fb419de2b63d4211765cc/lxml-6.0.2-cp311-cp311-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:7d2de809c2ee3b888b59f995625385f74629707c9355e0ff856445cdcae682b7", size = 5225133, upload-time = "2025-09-22T04:00:57.269Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b9/37/9c735274f5dbec726b2db99b98a43950395ba3d4a1043083dba2ad814170/lxml-6.0.2-cp311-cp311-manylinux_2_31_armv7l.whl", hash = "sha256:b2c3da8d93cf5db60e8858c17684c47d01fee6405e554fb55018dd85fc23b178", size = 4677944, upload-time = "2025-09-22T04:00:59.052Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/20/28/7dfe1ba3475d8bfca3878365075abe002e05d40dfaaeb7ec01b4c587d533/lxml-6.0.2-cp311-cp311-manylinux_2_38_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:442de7530296ef5e188373a1ea5789a46ce90c4847e597856570439621d9c553", size = 5284535, upload-time = "2025-09-22T04:01:01.335Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e7/cf/5f14bc0de763498fc29510e3532bf2b4b3a1c1d5d0dff2e900c16ba021ef/lxml-6.0.2-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:2593c77efde7bfea7f6389f1ab249b15ed4aa5bc5cb5131faa3b843c429fbedb", size = 5067343, upload-time = "2025-09-22T04:01:03.13Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1c/b0/bb8275ab5472f32b28cfbbcc6db7c9d092482d3439ca279d8d6fa02f7025/lxml-6.0.2-cp311-cp311-musllinux_1_2_armv7l.whl", hash = "sha256:3e3cb08855967a20f553ff32d147e14329b3ae70ced6edc2f282b94afbc74b2a", size = 4725419, upload-time = "2025-09-22T04:01:05.013Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/25/4c/7c222753bc72edca3b99dbadba1b064209bc8ed4ad448af990e60dcce462/lxml-6.0.2-cp311-cp311-musllinux_1_2_riscv64.whl", hash = "sha256:2ed6c667fcbb8c19c6791bbf40b7268ef8ddf5a96940ba9404b9f9a304832f6c", size = 5275008, upload-time = "2025-09-22T04:01:07.327Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6c/8c/478a0dc6b6ed661451379447cdbec77c05741a75736d97e5b2b729687828/lxml-6.0.2-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:b8f18914faec94132e5b91e69d76a5c1d7b0c73e2489ea8929c4aaa10b76bbf7", size = 5248906, upload-time = "2025-09-22T04:01:09.452Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2d/d9/5be3a6ab2784cdf9accb0703b65e1b64fcdd9311c9f007630c7db0cfcce1/lxml-6.0.2-cp311-cp311-win32.whl", hash = "sha256:6605c604e6daa9e0d7f0a2137bdc47a2e93b59c60a65466353e37f8272f47c46", size = 3610357, upload-time = "2025-09-22T04:01:11.102Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e2/7d/ca6fb13349b473d5732fb0ee3eec8f6c80fc0688e76b7d79c1008481bf1f/lxml-6.0.2-cp311-cp311-win_amd64.whl", hash = "sha256:e5867f2651016a3afd8dd2c8238baa66f1e2802f44bc17e236f547ace6647078", size = 4036583, upload-time = "2025-09-22T04:01:12.766Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ab/a2/51363b5ecd3eab46563645f3a2c3836a2fc67d01a1b87c5017040f39f567/lxml-6.0.2-cp311-cp311-win_arm64.whl", hash = "sha256:4197fb2534ee05fd3e7afaab5d8bfd6c2e186f65ea7f9cd6a82809c887bd1285", size = 3680591, upload-time = "2025-09-22T04:01:14.874Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f3/c8/8ff2bc6b920c84355146cd1ab7d181bc543b89241cfb1ebee824a7c81457/lxml-6.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:a59f5448ba2ceccd06995c95ea59a7674a10de0810f2ce90c9006f3cbc044456", size = 8661887, upload-time = "2025-09-22T04:01:17.265Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/37/6f/9aae1008083bb501ef63284220ce81638332f9ccbfa53765b2b7502203cf/lxml-6.0.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:e8113639f3296706fbac34a30813929e29247718e88173ad849f57ca59754924", size = 4667818, upload-time = "2025-09-22T04:01:19.688Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f1/ca/31fb37f99f37f1536c133476674c10b577e409c0a624384147653e38baf2/lxml-6.0.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:a8bef9b9825fa8bc816a6e641bb67219489229ebc648be422af695f6e7a4fa7f", size = 4950807, upload-time = "2025-09-22T04:01:21.487Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/da/87/f6cb9442e4bada8aab5ae7e1046264f62fdbeaa6e3f6211b93f4c0dd97f1/lxml-6.0.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:65ea18d710fd14e0186c2f973dc60bb52039a275f82d3c44a0e42b43440ea534", size = 5109179, upload-time = "2025-09-22T04:01:23.32Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c8/20/a7760713e65888db79bbae4f6146a6ae5c04e4a204a3c48896c408cd6ed2/lxml-6.0.2-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c371aa98126a0d4c739ca93ceffa0fd7a5d732e3ac66a46e74339acd4d334564", size = 5023044, upload-time = "2025-09-22T04:01:25.118Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a2/b0/7e64e0460fcb36471899f75831509098f3fd7cd02a3833ac517433cb4f8f/lxml-6.0.2-cp312-cp312-manylinux_2_26_i686.manylinux_2_28_i686.whl", hash = "sha256:700efd30c0fa1a3581d80a748157397559396090a51d306ea59a70020223d16f", size = 5359685, upload-time = "2025-09-22T04:01:27.398Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b9/e1/e5df362e9ca4e2f48ed6411bd4b3a0ae737cc842e96877f5bf9428055ab4/lxml-6.0.2-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:c33e66d44fe60e72397b487ee92e01da0d09ba2d66df8eae42d77b6d06e5eba0", size = 5654127, upload-time = "2025-09-22T04:01:29.629Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c6/d1/232b3309a02d60f11e71857778bfcd4acbdb86c07db8260caf7d008b08f8/lxml-6.0.2-cp312-cp312-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:90a345bbeaf9d0587a3aaffb7006aa39ccb6ff0e96a57286c0cb2fd1520ea192", size = 5253958, upload-time = "2025-09-22T04:01:31.535Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/35/35/d955a070994725c4f7d80583a96cab9c107c57a125b20bb5f708fe941011/lxml-6.0.2-cp312-cp312-manylinux_2_31_armv7l.whl", hash = "sha256:064fdadaf7a21af3ed1dcaa106b854077fbeada827c18f72aec9346847cd65d0", size = 4711541, upload-time = "2025-09-22T04:01:33.801Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1e/be/667d17363b38a78c4bd63cfd4b4632029fd68d2c2dc81f25ce9eb5224dd5/lxml-6.0.2-cp312-cp312-manylinux_2_38_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:fbc74f42c3525ac4ffa4b89cbdd00057b6196bcefe8bce794abd42d33a018092", size = 5267426, upload-time = "2025-09-22T04:01:35.639Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ea/47/62c70aa4a1c26569bc958c9ca86af2bb4e1f614e8c04fb2989833874f7ae/lxml-6.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:6ddff43f702905a4e32bc24f3f2e2edfe0f8fde3277d481bffb709a4cced7a1f", size = 5064917, upload-time = "2025-09-22T04:01:37.448Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/bd/55/6ceddaca353ebd0f1908ef712c597f8570cc9c58130dbb89903198e441fd/lxml-6.0.2-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:6da5185951d72e6f5352166e3da7b0dc27aa70bd1090b0eb3f7f7212b53f1bb8", size = 4788795, upload-time = "2025-09-22T04:01:39.165Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/cf/e8/fd63e15da5e3fd4c2146f8bbb3c14e94ab850589beab88e547b2dbce22e1/lxml-6.0.2-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:57a86e1ebb4020a38d295c04fc79603c7899e0df71588043eb218722dabc087f", size = 5676759, upload-time = "2025-09-22T04:01:41.506Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/76/47/b3ec58dc5c374697f5ba37412cd2728f427d056315d124dd4b61da381877/lxml-6.0.2-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:2047d8234fe735ab77802ce5f2297e410ff40f5238aec569ad7c8e163d7b19a6", size = 5255666, upload-time = "2025-09-22T04:01:43.363Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/19/93/03ba725df4c3d72afd9596eef4a37a837ce8e4806010569bedfcd2cb68fd/lxml-6.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6f91fd2b2ea15a6800c8e24418c0775a1694eefc011392da73bc6cef2623b322", size = 5277989, upload-time = "2025-09-22T04:01:45.215Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c6/80/c06de80bfce881d0ad738576f243911fccf992687ae09fd80b734712b39c/lxml-6.0.2-cp312-cp312-win32.whl", hash = "sha256:3ae2ce7d6fedfb3414a2b6c5e20b249c4c607f72cb8d2bb7cc9c6ec7c6f4e849", size = 3611456, upload-time = "2025-09-22T04:01:48.243Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f7/d7/0cdfb6c3e30893463fb3d1e52bc5f5f99684a03c29a0b6b605cfae879cd5/lxml-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:72c87e5ee4e58a8354fb9c7c84cbf95a1c8236c127a5d1b7683f04bed8361e1f", size = 4011793, upload-time = "2025-09-22T04:01:50.042Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ea/7b/93c73c67db235931527301ed3785f849c78991e2e34f3fd9a6663ffda4c5/lxml-6.0.2-cp312-cp312-win_arm64.whl", hash = "sha256:61cb10eeb95570153e0c0e554f58df92ecf5109f75eacad4a95baa709e26c3d6", size = 3672836, upload-time = "2025-09-22T04:01:52.145Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e7/9c/780c9a8fce3f04690b374f72f41306866b0400b9d0fdf3e17aaa37887eed/lxml-6.0.2-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:e748d4cf8fef2526bb2a589a417eba0c8674e29ffcb570ce2ceca44f1e567bf6", size = 3939264, upload-time = "2025-09-22T04:04:32.892Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f5/5a/1ab260c00adf645d8bf7dec7f920f744b032f69130c681302821d5debea6/lxml-6.0.2-pp310-pypy310_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:4ddb1049fa0579d0cbd00503ad8c58b9ab34d1254c77bc6a5576d96ec7853dba", size = 4216435, upload-time = "2025-09-22T04:04:34.907Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f2/37/565f3b3d7ffede22874b6d86be1a1763d00f4ea9fc5b9b6ccb11e4ec8612/lxml-6.0.2-pp310-pypy310_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:cb233f9c95f83707dae461b12b720c1af9c28c2d19208e1be03387222151daf5", size = 4325913, upload-time = "2025-09-22T04:04:37.205Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/22/ec/f3a1b169b2fb9d03467e2e3c0c752ea30e993be440a068b125fc7dd248b0/lxml-6.0.2-pp310-pypy310_pp73-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bc456d04db0515ce3320d714a1eac7a97774ff0849e7718b492d957da4631dd4", size = 4269357, upload-time = "2025-09-22T04:04:39.322Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/77/a2/585a28fe3e67daa1cf2f06f34490d556d121c25d500b10082a7db96e3bcd/lxml-6.0.2-pp310-pypy310_pp73-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:2613e67de13d619fd283d58bda40bff0ee07739f624ffee8b13b631abf33083d", size = 4412295, upload-time = "2025-09-22T04:04:41.647Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7b/d9/a57dd8bcebd7c69386c20263830d4fa72d27e6b72a229ef7a48e88952d9a/lxml-6.0.2-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:24a8e756c982c001ca8d59e87c80c4d9dcd4d9b44a4cbeb8d9be4482c514d41d", size = 3516913, upload-time = "2025-09-22T04:04:43.602Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0b/11/29d08bc103a62c0eba8016e7ed5aeebbf1e4312e83b0b1648dd203b0e87d/lxml-6.0.2-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:1c06035eafa8404b5cf475bb37a9f6088b0aca288d4ccc9d69389750d5543700", size = 3949829, upload-time = "2025-09-22T04:04:45.608Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/12/b3/52ab9a3b31e5ab8238da241baa19eec44d2ab426532441ee607165aebb52/lxml-6.0.2-pp311-pypy311_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:c7d13103045de1bdd6fe5d61802565f1a3537d70cd3abf596aa0af62761921ee", size = 4226277, upload-time = "2025-09-22T04:04:47.754Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a0/33/1eaf780c1baad88224611df13b1c2a9dfa460b526cacfe769103ff50d845/lxml-6.0.2-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:0a3c150a95fbe5ac91de323aa756219ef9cf7fde5a3f00e2281e30f33fa5fa4f", size = 4330433, upload-time = "2025-09-22T04:04:49.907Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/7a/c1/27428a2ff348e994ab4f8777d3a0ad510b6b92d37718e5887d2da99952a2/lxml-6.0.2-pp311-pypy311_pp73-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:60fa43be34f78bebb27812ed90f1925ec99560b0fa1decdb7d12b84d857d31e9", size = 4272119, upload-time = "2025-09-22T04:04:51.801Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f0/d0/3020fa12bcec4ab62f97aab026d57c2f0cfd480a558758d9ca233bb6a79d/lxml-6.0.2-pp311-pypy311_pp73-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:21c73b476d3cfe836be731225ec3421fa2f048d84f6df6a8e70433dff1376d5a", size = 4417314, upload-time = "2025-09-22T04:04:55.024Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/6c/77/d7f491cbc05303ac6801651aabeb262d43f319288c1ea96c66b1d2692ff3/lxml-6.0.2-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:27220da5be049e936c3aca06f174e8827ca6445a4353a1995584311487fc4e3e", size = 3518768, upload-time = "2025-09-22T04:04:57.097Z" },
]
[[package]]
name = "openpyxl"
version = "3.1.5"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "et-xmlfile" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/3d/f9/88d94a75de065ea32619465d2f77b29a0469500e99012523b91cc4141cd1/openpyxl-3.1.5.tar.gz", hash = "sha256:cf0e3cf56142039133628b5acffe8ef0c12bc902d2aadd3e0fe5878dc08d1050" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/3d/f9/88d94a75de065ea32619465d2f77b29a0469500e99012523b91cc4141cd1/openpyxl-3.1.5.tar.gz", hash = "sha256:cf0e3cf56142039133628b5acffe8ef0c12bc902d2aadd3e0fe5878dc08d1050", size = 186464, upload-time = "2024-06-28T14:03:44.161Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl", hash = "sha256:5282c12b107bffeef825f4617dc029afaf41d0ea60823bbb665ef3079dc79de2" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl", hash = "sha256:5282c12b107bffeef825f4617dc029afaf41d0ea60823bbb665ef3079dc79de2", size = 250910, upload-time = "2024-06-28T14:03:41.161Z" },
]
[[package]]
name = "packaging"
version = "25.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" },
]
[[package]]
name = "pillow"
version = "11.2.1"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/af/cb/bb5c01fcd2a69335b86c22142b2bccfc3464087efb7fd382eee5ffc7fdf7/pillow-11.2.1.tar.gz", hash = "sha256:a64dd61998416367b7ef979b73d3a85853ba9bec4c2925f74e588879a58716b6" }
version = "12.0.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/5a/b0/cace85a1b0c9775a9f8f5d5423c8261c858760e2466c79b2dd184638b056/pillow-12.0.0.tar.gz", hash = "sha256:87d4f8125c9988bfbed67af47dd7a953e2fc7b0cc1e7800ec6d2080d490bb353", size = 47008828, upload-time = "2025-10-15T18:24:14.008Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/0d/8b/b158ad57ed44d3cc54db8d68ad7c0a58b8fc0e4c7a3f995f9d62d5b464a1/pillow-11.2.1-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:d57a75d53922fc20c165016a20d9c44f73305e67c351bbc60d1adaf662e74047" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b1/f8/bb5d956142f86c2d6cc36704943fa761f2d2e4c48b7436fd0a85c20f1713/pillow-11.2.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:127bf6ac4a5b58b3d32fc8289656f77f80567d65660bc46f72c0d77e6600cc95" },
{ url = "https://mirrors.aliyun.com/pypi/packages/22/7f/0e413bb3e2aa797b9ca2c5c38cb2e2e45d88654e5b12da91ad446964cfae/pillow-11.2.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4ba4be812c7a40280629e55ae0b14a0aafa150dd6451297562e1764808bbe61" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f3/b4/cc647f4d13f3eb837d3065824aa58b9bcf10821f029dc79955ee43f793bd/pillow-11.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c8bd62331e5032bc396a93609982a9ab6b411c05078a52f5fe3cc59234a3abd1" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c2/6f/240b772a3b35cdd7384166461567aa6713799b4e78d180c555bd284844ea/pillow-11.2.1-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:562d11134c97a62fe3af29581f083033179f7ff435f78392565a1ad2d1c2c45c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f3/5e/7ca9c815ade5fdca18853db86d812f2f188212792780208bdb37a0a6aef4/pillow-11.2.1-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:c97209e85b5be259994eb5b69ff50c5d20cca0f458ef9abd835e262d9d88b39d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/02/81/c3d9d38ce0c4878a77245d4cf2c46d45a4ad0f93000227910a46caff52f3/pillow-11.2.1-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:0c3e6d0f59171dfa2e25d7116217543310908dfa2770aa64b8f87605f8cacc97" },
{ url = "https://mirrors.aliyun.com/pypi/packages/42/49/52b719b89ac7da3185b8d29c94d0e6aec8140059e3d8adcaa46da3751180/pillow-11.2.1-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:cc1c3bc53befb6096b84165956e886b1729634a799e9d6329a0c512ab651e579" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5b/0b/ede75063ba6023798267023dc0d0401f13695d228194d2242d5a7ba2f964/pillow-11.2.1-cp310-cp310-win32.whl", hash = "sha256:312c77b7f07ab2139924d2639860e084ec2a13e72af54d4f08ac843a5fc9c79d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ed/3c/9831da3edea527c2ed9a09f31a2c04e77cd705847f13b69ca60269eec370/pillow-11.2.1-cp310-cp310-win_amd64.whl", hash = "sha256:9bc7ae48b8057a611e5fe9f853baa88093b9a76303937449397899385da06fad" },
{ url = "https://mirrors.aliyun.com/pypi/packages/01/97/1f66ff8a1503d8cbfc5bae4dc99d54c6ec1e22ad2b946241365320caabc2/pillow-11.2.1-cp310-cp310-win_arm64.whl", hash = "sha256:2728567e249cdd939f6cc3d1f049595c66e4187f3c34078cbc0a7d21c47482d2" },
{ url = "https://mirrors.aliyun.com/pypi/packages/68/08/3fbf4b98924c73037a8e8b4c2c774784805e0fb4ebca6c5bb60795c40125/pillow-11.2.1-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:35ca289f712ccfc699508c4658a1d14652e8033e9b69839edf83cbdd0ba39e70" },
{ url = "https://mirrors.aliyun.com/pypi/packages/84/92/6505b1af3d2849d5e714fc75ba9e69b7255c05ee42383a35a4d58f576b16/pillow-11.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:e0409af9f829f87a2dfb7e259f78f317a5351f2045158be321fd135973fff7bf" },
{ url = "https://mirrors.aliyun.com/pypi/packages/3c/8c/ac2f99d2a70ff966bc7eb13dacacfaab57c0549b2ffb351b6537c7840b12/pillow-11.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4e5c5edee874dce4f653dbe59db7c73a600119fbea8d31f53423586ee2aafd7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/1f/e3/0a58b5d838687f40891fff9cbaf8669f90c96b64dc8f91f87894413856c6/pillow-11.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b93a07e76d13bff9444f1a029e0af2964e654bfc2e2c2d46bfd080df5ad5f3d8" },
{ url = "https://mirrors.aliyun.com/pypi/packages/21/f5/6ba14718135f08fbfa33308efe027dd02b781d3f1d5c471444a395933aac/pillow-11.2.1-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:e6def7eed9e7fa90fde255afaf08060dc4b343bbe524a8f69bdd2a2f0018f600" },
{ url = "https://mirrors.aliyun.com/pypi/packages/20/f2/805ad600fc59ebe4f1ba6129cd3a75fb0da126975c8579b8f57abeb61e80/pillow-11.2.1-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:8f4f3724c068be008c08257207210c138d5f3731af6c155a81c2b09a9eb3a788" },
{ url = "https://mirrors.aliyun.com/pypi/packages/71/6b/4ef8a288b4bb2e0180cba13ca0a519fa27aa982875882392b65131401099/pillow-11.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:a0a6709b47019dff32e678bc12c63008311b82b9327613f534e496dacaefb71e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/62/ae/f29c705a09cbc9e2a456590816e5c234382ae5d32584f451c3eb41a62062/pillow-11.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:f6b0c664ccb879109ee3ca702a9272d877f4fcd21e5eb63c26422fd6e415365e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6e/1a/c8217b6f2f73794a5e219fbad087701f412337ae6dbb956db37d69a9bc43/pillow-11.2.1-cp311-cp311-win32.whl", hash = "sha256:cc5d875d56e49f112b6def6813c4e3d3036d269c008bf8aef72cd08d20ca6df6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e2/72/25a8f40170dc262e86e90f37cb72cb3de5e307f75bf4b02535a61afcd519/pillow-11.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:0f5c7eda47bf8e3c8a283762cab94e496ba977a420868cb819159980b6709193" },
{ url = "https://mirrors.aliyun.com/pypi/packages/06/9e/76825e39efee61efea258b479391ca77d64dbd9e5804e4ad0fa453b4ba55/pillow-11.2.1-cp311-cp311-win_arm64.whl", hash = "sha256:4d375eb838755f2528ac8cbc926c3e31cc49ca4ad0cf79cff48b20e30634a4a7" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c7/40/052610b15a1b8961f52537cc8326ca6a881408bc2bdad0d852edeb6ed33b/pillow-11.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:78afba22027b4accef10dbd5eed84425930ba41b3ea0a86fa8d20baaf19d807f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e5/7e/b86dbd35a5f938632093dc40d1682874c33dcfe832558fc80ca56bfcb774/pillow-11.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:78092232a4ab376a35d68c4e6d5e00dfd73454bd12b230420025fbe178ee3b0b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a4/5c/467a161f9ed53e5eab51a42923c33051bf8d1a2af4626ac04f5166e58e0c/pillow-11.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:25a5f306095c6780c52e6bbb6109624b95c5b18e40aab1c3041da3e9e0cd3e2d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/62/73/972b7742e38ae0e2ac76ab137ca6005dcf877480da0d9d61d93b613065b4/pillow-11.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0c7b29dbd4281923a2bfe562acb734cee96bbb129e96e6972d315ed9f232bef4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e4/3a/427e4cb0b9e177efbc1a84798ed20498c4f233abde003c06d2650a6d60cb/pillow-11.2.1-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:3e645b020f3209a0181a418bffe7b4a93171eef6c4ef6cc20980b30bebf17b7d" },
{ url = "https://mirrors.aliyun.com/pypi/packages/fe/7c/d8b1330458e4d2f3f45d9508796d7caf0c0d3764c00c823d10f6f1a3b76d/pillow-11.2.1-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:b2dbea1012ccb784a65349f57bbc93730b96e85b42e9bf7b01ef40443db720b4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b3/2f/65738384e0b1acf451de5a573d8153fe84103772d139e1e0bdf1596be2ea/pillow-11.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:da3104c57bbd72948d75f6a9389e6727d2ab6333c3617f0a89d72d4940aa0443" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6a/c5/e795c9f2ddf3debb2dedd0df889f2fe4b053308bb59a3cc02a0cd144d641/pillow-11.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:598174aef4589af795f66f9caab87ba4ff860ce08cd5bb447c6fc553ffee603c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/96/ae/ca0099a3995976a9fce2f423166f7bff9b12244afdc7520f6ed38911539a/pillow-11.2.1-cp312-cp312-win32.whl", hash = "sha256:1d535df14716e7f8776b9e7fee118576d65572b4aad3ed639be9e4fa88a1cad3" },
{ url = "https://mirrors.aliyun.com/pypi/packages/7c/18/24bff2ad716257fc03da964c5e8f05d9790a779a8895d6566e493ccf0189/pillow-11.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:14e33b28bf17c7a38eede290f77db7c664e4eb01f7869e37fa98a5aa95978941" },
{ url = "https://mirrors.aliyun.com/pypi/packages/da/bb/e8d656c9543276517ee40184aaa39dcb41e683bca121022f9323ae11b39d/pillow-11.2.1-cp312-cp312-win_arm64.whl", hash = "sha256:21e1470ac9e5739ff880c211fc3af01e3ae505859392bf65458c224d0bf283eb" },
{ url = "https://mirrors.aliyun.com/pypi/packages/33/49/c8c21e4255b4f4a2c0c68ac18125d7f5460b109acc6dfdef1a24f9b960ef/pillow-11.2.1-pp310-pypy310_pp73-macosx_10_15_x86_64.whl", hash = "sha256:9b7b0d4fd2635f54ad82785d56bc0d94f147096493a79985d0ab57aedd563156" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6d/f1/f7255c0838f8c1ef6d55b625cfb286835c17e8136ce4351c5577d02c443b/pillow-11.2.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl", hash = "sha256:aa442755e31c64037aa7c1cb186e0b369f8416c567381852c63444dd666fb772" },
{ url = "https://mirrors.aliyun.com/pypi/packages/e2/57/9968114457bd131063da98d87790d080366218f64fa2943b65ac6739abb3/pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f0d3348c95b766f54b76116d53d4cb171b52992a1027e7ca50c81b43b9d9e363" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b2/1b/e35d8a158e21372ecc48aac9c453518cfe23907bb82f950d6e1c72811eb0/pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:85d27ea4c889342f7e35f6d56e7e1cb345632ad592e8c51b693d7b7556043ce0" },
{ url = "https://mirrors.aliyun.com/pypi/packages/26/da/2c11d03b765efff0ccc473f1c4186dc2770110464f2177efaed9cf6fae01/pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:bf2c33d6791c598142f00c9c4c7d47f6476731c31081331664eb26d6ab583e01" },
{ url = "https://mirrors.aliyun.com/pypi/packages/79/1a/4e85bd7cadf78412c2a3069249a09c32ef3323650fd3005c97cca7aa21df/pillow-11.2.1-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:e616e7154c37669fc1dfc14584f11e284e05d1c650e1c0f972f281c4ccc53193" },
{ url = "https://mirrors.aliyun.com/pypi/packages/69/03/239939915216de1e95e0ce2334bf17a7870ae185eb390fab6d706aadbfc0/pillow-11.2.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:39ad2e0f424394e3aebc40168845fee52df1394a4673a6ee512d840d14ab3013" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a4/ad/2613c04633c7257d9481ab21d6b5364b59fc5d75faafd7cb8693523945a3/pillow-11.2.1-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:80f1df8dbe9572b4b7abdfa17eb5d78dd620b1d55d9e25f834efdbee872d3aed" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a4/fd/dcdda4471ed667de57bb5405bb42d751e6cfdd4011a12c248b455c778e03/pillow-11.2.1-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:ea926cfbc3957090becbcbbb65ad177161a2ff2ad578b5a6ec9bb1e1cd78753c" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ac/89/8a2536e95e77432833f0db6fd72a8d310c8e4272a04461fb833eb021bf94/pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:738db0e0941ca0376804d4de6a782c005245264edaa253ffce24e5a15cbdc7bd" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9d/8f/abd47b73c60712f88e9eda32baced7bfc3e9bd6a7619bb64b93acff28c3e/pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9db98ab6565c69082ec9b0d4e40dd9f6181dab0dd236d26f7a50b8b9bfbd5076" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f6/20/5c0a0aa83b213b7a07ec01e71a3d6ea2cf4ad1d2c686cc0168173b6089e7/pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:036e53f4170e270ddb8797d4c590e6dd14d28e15c7da375c18978045f7e6c37b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/58/0e/2abab98a72202d91146abc839e10c14f7cf36166f12838ea0c4db3ca6ecb/pillow-11.2.1-pp311-pypy311_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:14f73f7c291279bd65fda51ee87affd7c1e097709f7fdd0188957a16c264601f" },
{ url = "https://mirrors.aliyun.com/pypi/packages/21/2c/5e05f58658cf49b6667762cca03d6e7d85cededde2caf2ab37b81f80e574/pillow-11.2.1-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:208653868d5c9ecc2b327f9b9ef34e0e42a4cdd172c2988fd81d62d2bc9bc044" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/5d/08/26e68b6b5da219c2a2cb7b563af008b53bb8e6b6fcb3fa40715fcdb2523a/pillow-12.0.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:3adfb466bbc544b926d50fe8f4a4e6abd8c6bffd28a26177594e6e9b2b76572b", size = 5289809, upload-time = "2025-10-15T18:21:27.791Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/cb/e9/4e58fb097fb74c7b4758a680aacd558810a417d1edaa7000142976ef9d2f/pillow-12.0.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:1ac11e8ea4f611c3c0147424eae514028b5e9077dd99ab91e1bd7bc33ff145e1", size = 4650606, upload-time = "2025-10-15T18:21:29.823Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4b/e0/1fa492aa9f77b3bc6d471c468e62bfea1823056bf7e5e4f1914d7ab2565e/pillow-12.0.0-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d49e2314c373f4c2b39446fb1a45ed333c850e09d0c59ac79b72eb3b95397363", size = 6221023, upload-time = "2025-10-15T18:21:31.415Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c1/09/4de7cd03e33734ccd0c876f0251401f1314e819cbfd89a0fcb6e77927cc6/pillow-12.0.0-cp310-cp310-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c7b2a63fd6d5246349f3d3f37b14430d73ee7e8173154461785e43036ffa96ca", size = 8024937, upload-time = "2025-10-15T18:21:33.453Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2e/69/0688e7c1390666592876d9d474f5e135abb4acb39dcb583c4dc5490f1aff/pillow-12.0.0-cp310-cp310-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d64317d2587c70324b79861babb9c09f71fbb780bad212018874b2c013d8600e", size = 6334139, upload-time = "2025-10-15T18:21:35.395Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ed/1c/880921e98f525b9b44ce747ad1ea8f73fd7e992bafe3ca5e5644bf433dea/pillow-12.0.0-cp310-cp310-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d77153e14b709fd8b8af6f66a3afbb9ed6e9fc5ccf0b6b7e1ced7b036a228782", size = 7026074, upload-time = "2025-10-15T18:21:37.219Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/28/03/96f718331b19b355610ef4ebdbbde3557c726513030665071fd025745671/pillow-12.0.0-cp310-cp310-musllinux_1_2_aarch64.whl", hash = "sha256:32ed80ea8a90ee3e6fa08c21e2e091bba6eda8eccc83dbc34c95169507a91f10", size = 6448852, upload-time = "2025-10-15T18:21:39.168Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3a/a0/6a193b3f0cc9437b122978d2c5cbce59510ccf9a5b48825096ed7472da2f/pillow-12.0.0-cp310-cp310-musllinux_1_2_x86_64.whl", hash = "sha256:c828a1ae702fc712978bda0320ba1b9893d99be0badf2647f693cc01cf0f04fa", size = 7117058, upload-time = "2025-10-15T18:21:40.997Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a7/c4/043192375eaa4463254e8e61f0e2ec9a846b983929a8d0a7122e0a6d6fff/pillow-12.0.0-cp310-cp310-win32.whl", hash = "sha256:bd87e140e45399c818fac4247880b9ce719e4783d767e030a883a970be632275", size = 6295431, upload-time = "2025-10-15T18:21:42.518Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/92/c6/c2f2fc7e56301c21827e689bb8b0b465f1b52878b57471a070678c0c33cd/pillow-12.0.0-cp310-cp310-win_amd64.whl", hash = "sha256:455247ac8a4cfb7b9bc45b7e432d10421aea9fc2e74d285ba4072688a74c2e9d", size = 7000412, upload-time = "2025-10-15T18:21:44.404Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b2/d2/5f675067ba82da7a1c238a73b32e3fd78d67f9d9f80fbadd33a40b9c0481/pillow-12.0.0-cp310-cp310-win_arm64.whl", hash = "sha256:6ace95230bfb7cd79ef66caa064bbe2f2a1e63d93471c3a2e1f1348d9f22d6b7", size = 2435903, upload-time = "2025-10-15T18:21:46.29Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0e/5a/a2f6773b64edb921a756eb0729068acad9fc5208a53f4a349396e9436721/pillow-12.0.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:0fd00cac9c03256c8b2ff58f162ebcd2587ad3e1f2e397eab718c47e24d231cc", size = 5289798, upload-time = "2025-10-15T18:21:47.763Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2e/05/069b1f8a2e4b5a37493da6c5868531c3f77b85e716ad7a590ef87d58730d/pillow-12.0.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:a3475b96f5908b3b16c47533daaa87380c491357d197564e0ba34ae75c0f3257", size = 4650589, upload-time = "2025-10-15T18:21:49.515Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/61/e3/2c820d6e9a36432503ead175ae294f96861b07600a7156154a086ba7111a/pillow-12.0.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:110486b79f2d112cf6add83b28b627e369219388f64ef2f960fef9ebaf54c642", size = 6230472, upload-time = "2025-10-15T18:21:51.052Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4f/89/63427f51c64209c5e23d4d52071c8d0f21024d3a8a487737caaf614a5795/pillow-12.0.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:5269cc1caeedb67e6f7269a42014f381f45e2e7cd42d834ede3c703a1d915fe3", size = 8033887, upload-time = "2025-10-15T18:21:52.604Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f6/1b/c9711318d4901093c15840f268ad649459cd81984c9ec9887756cca049a5/pillow-12.0.0-cp311-cp311-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:aa5129de4e174daccbc59d0a3b6d20eaf24417d59851c07ebb37aeb02947987c", size = 6343964, upload-time = "2025-10-15T18:21:54.619Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/41/1e/db9470f2d030b4995083044cd8738cdd1bf773106819f6d8ba12597d5352/pillow-12.0.0-cp311-cp311-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bee2a6db3a7242ea309aa7ee8e2780726fed67ff4e5b40169f2c940e7eb09227", size = 7034756, upload-time = "2025-10-15T18:21:56.151Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/cc/b0/6177a8bdd5ee4ed87cba2de5a3cc1db55ffbbec6176784ce5bb75aa96798/pillow-12.0.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:90387104ee8400a7b4598253b4c406f8958f59fcf983a6cea2b50d59f7d63d0b", size = 6458075, upload-time = "2025-10-15T18:21:57.759Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/bc/5e/61537aa6fa977922c6a03253a0e727e6e4a72381a80d63ad8eec350684f2/pillow-12.0.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:bc91a56697869546d1b8f0a3ff35224557ae7f881050e99f615e0119bf934b4e", size = 7125955, upload-time = "2025-10-15T18:21:59.372Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1f/3d/d5033539344ee3cbd9a4d69e12e63ca3a44a739eb2d4c8da350a3d38edd7/pillow-12.0.0-cp311-cp311-win32.whl", hash = "sha256:27f95b12453d165099c84f8a8bfdfd46b9e4bda9e0e4b65f0635430027f55739", size = 6298440, upload-time = "2025-10-15T18:22:00.982Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4d/42/aaca386de5cc8bd8a0254516957c1f265e3521c91515b16e286c662854c4/pillow-12.0.0-cp311-cp311-win_amd64.whl", hash = "sha256:b583dc9070312190192631373c6c8ed277254aa6e6084b74bdd0a6d3b221608e", size = 6999256, upload-time = "2025-10-15T18:22:02.617Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ba/f1/9197c9c2d5708b785f631a6dfbfa8eb3fb9672837cb92ae9af812c13b4ed/pillow-12.0.0-cp311-cp311-win_arm64.whl", hash = "sha256:759de84a33be3b178a64c8ba28ad5c135900359e85fb662bc6e403ad4407791d", size = 2436025, upload-time = "2025-10-15T18:22:04.598Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2c/90/4fcce2c22caf044e660a198d740e7fbc14395619e3cb1abad12192c0826c/pillow-12.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:53561a4ddc36facb432fae7a9d8afbfaf94795414f5cdc5fc52f28c1dca90371", size = 5249377, upload-time = "2025-10-15T18:22:05.993Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fd/e0/ed960067543d080691d47d6938ebccbf3976a931c9567ab2fbfab983a5dd/pillow-12.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:71db6b4c1653045dacc1585c1b0d184004f0d7e694c7b34ac165ca70c0838082", size = 4650343, upload-time = "2025-10-15T18:22:07.718Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/e7/a1/f81fdeddcb99c044bf7d6faa47e12850f13cee0849537a7d27eeab5534d4/pillow-12.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2fa5f0b6716fc88f11380b88b31fe591a06c6315e955c096c35715788b339e3f", size = 6232981, upload-time = "2025-10-15T18:22:09.287Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/88/e1/9098d3ce341a8750b55b0e00c03f1630d6178f38ac191c81c97a3b047b44/pillow-12.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:82240051c6ca513c616f7f9da06e871f61bfd7805f566275841af15015b8f98d", size = 8041399, upload-time = "2025-10-15T18:22:10.872Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a7/62/a22e8d3b602ae8cc01446d0c57a54e982737f44b6f2e1e019a925143771d/pillow-12.0.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:55f818bd74fe2f11d4d7cbc65880a843c4075e0ac7226bc1a23261dbea531953", size = 6347740, upload-time = "2025-10-15T18:22:12.769Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/4f/87/424511bdcd02c8d7acf9f65caa09f291a519b16bd83c3fb3374b3d4ae951/pillow-12.0.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b87843e225e74576437fd5b6a4c2205d422754f84a06942cfaf1dc32243e45a8", size = 7040201, upload-time = "2025-10-15T18:22:14.813Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/dc/4d/435c8ac688c54d11755aedfdd9f29c9eeddf68d150fe42d1d3dbd2365149/pillow-12.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:c607c90ba67533e1b2355b821fef6764d1dd2cbe26b8c1005ae84f7aea25ff79", size = 6462334, upload-time = "2025-10-15T18:22:16.375Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2b/f2/ad34167a8059a59b8ad10bc5c72d4d9b35acc6b7c0877af8ac885b5f2044/pillow-12.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:21f241bdd5080a15bc86d3466a9f6074a9c2c2b314100dd896ac81ee6db2f1ba", size = 7134162, upload-time = "2025-10-15T18:22:17.996Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0c/b1/a7391df6adacf0a5c2cf6ac1cf1fcc1369e7d439d28f637a847f8803beb3/pillow-12.0.0-cp312-cp312-win32.whl", hash = "sha256:dd333073e0cacdc3089525c7df7d39b211bcdf31fc2824e49d01c6b6187b07d0", size = 6298769, upload-time = "2025-10-15T18:22:19.923Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a2/0b/d87733741526541c909bbf159e338dcace4f982daac6e5a8d6be225ca32d/pillow-12.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:9fe611163f6303d1619bbcb653540a4d60f9e55e622d60a3108be0d5b441017a", size = 7001107, upload-time = "2025-10-15T18:22:21.644Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/bc/96/aaa61ce33cc98421fb6088af2a03be4157b1e7e0e87087c888e2370a7f45/pillow-12.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:7dfb439562f234f7d57b1ac6bc8fe7f838a4bd49c79230e0f6a1da93e82f1fad", size = 2436012, upload-time = "2025-10-15T18:22:23.621Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1d/b3/582327e6c9f86d037b63beebe981425d6811104cb443e8193824ef1a2f27/pillow-12.0.0-pp311-pypy311_pp73-macosx_10_15_x86_64.whl", hash = "sha256:b22bd8c974942477156be55a768f7aa37c46904c175be4e158b6a86e3a6b7ca8", size = 5215068, upload-time = "2025-10-15T18:23:59.594Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fd/d6/67748211d119f3b6540baf90f92fae73ae51d5217b171b0e8b5f7e5d558f/pillow-12.0.0-pp311-pypy311_pp73-macosx_11_0_arm64.whl", hash = "sha256:805ebf596939e48dbb2e4922a1d3852cfc25c38160751ce02da93058b48d252a", size = 4614994, upload-time = "2025-10-15T18:24:01.669Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/2d/e1/f8281e5d844c41872b273b9f2c34a4bf64ca08905668c8ae730eedc7c9fa/pillow-12.0.0-pp311-pypy311_pp73-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cae81479f77420d217def5f54b5b9d279804d17e982e0f2fa19b1d1e14ab5197", size = 5246639, upload-time = "2025-10-15T18:24:03.403Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/94/5a/0d8ab8ffe8a102ff5df60d0de5af309015163bf710c7bb3e8311dd3b3ad0/pillow-12.0.0-pp311-pypy311_pp73-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:aeaefa96c768fc66818730b952a862235d68825c178f1b3ffd4efd7ad2edcb7c", size = 6986839, upload-time = "2025-10-15T18:24:05.344Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/20/2e/3434380e8110b76cd9eb00a363c484b050f949b4bbe84ba770bb8508a02c/pillow-12.0.0-pp311-pypy311_pp73-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:09f2d0abef9e4e2f349305a4f8cc784a8a6c2f58a8c4892eea13b10a943bd26e", size = 5313505, upload-time = "2025-10-15T18:24:07.137Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/57/ca/5a9d38900d9d74785141d6580950fe705de68af735ff6e727cb911b64740/pillow-12.0.0-pp311-pypy311_pp73-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:bdee52571a343d721fb2eb3b090a82d959ff37fc631e3f70422e0c2e029f3e76", size = 5963654, upload-time = "2025-10-15T18:24:09.579Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/95/7e/f896623c3c635a90537ac093c6a618ebe1a90d87206e42309cb5d98a1b9e/pillow-12.0.0-pp311-pypy311_pp73-win_amd64.whl", hash = "sha256:b290fd8aa38422444d4b50d579de197557f182ef1068b75f5aa8558638b8d0a5", size = 6997850, upload-time = "2025-10-15T18:24:11.495Z" },
]
[[package]]
name = "pluggy"
version = "1.5.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/96/2d/02d4312c973c6050a18b314a5ad0b3210edb65a906f868e31c111dede4a6/pluggy-1.5.0.tar.gz", hash = "sha256:2cffa88e94fdc978c4c574f15f9e59b7f4201d439195c3715ca9e2486f1d0cf1" }
version = "1.6.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/f9/e2/3e91f31a7d2b083fe6ef3fa267035b518369d9511ffab804f839851d2779/pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3", size = 69412, upload-time = "2025-05-15T12:30:07.975Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/88/5f/e351af9a41f866ac3f1fac4ca0613908d9a41741cfcf2228f4ad853b697d/pluggy-1.5.0-py3-none-any.whl", hash = "sha256:44e1ad92c8ca002de6377e165f3e0f1be63266ab4d554740532335b9d75ea669" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538, upload-time = "2025-05-15T12:30:06.134Z" },
]
[[package]]
name = "pygments"
version = "2.19.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631, upload-time = "2025-06-21T13:39:12.283Z" }
wheels = [
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" },
]
[[package]]
name = "pytest"
version = "8.3.5"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
version = "8.4.2"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "colorama", marker = "sys_platform == 'win32'" },
{ name = "exceptiongroup", marker = "python_full_version < '3.11'" },
{ name = "iniconfig" },
{ name = "packaging" },
{ name = "pluggy" },
{ name = "pygments" },
{ name = "tomli", marker = "python_full_version < '3.11'" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/ae/3c/c9d525a414d506893f0cd8a8d0de7706446213181570cdbd766691164e40/pytest-8.3.5.tar.gz", hash = "sha256:f4efe70cc14e511565ac476b57c279e12a855b11f48f212af1080ef2263d3845" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a3/5c/00a0e072241553e1a7496d638deababa67c5058571567b92a7eaa258397c/pytest-8.4.2.tar.gz", hash = "sha256:86c0d0b93306b961d58d62a4db4879f27fe25513d4b969df351abdddb3c30e01", size = 1519618, upload-time = "2025-09-04T14:34:22.711Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/30/3d/64ad57c803f1fa1e963a7946b6e0fea4a70df53c1a7fed304586539c2bac/pytest-8.3.5-py3-none-any.whl", hash = "sha256:c69214aa47deac29fad6c2a4f590b9c4a9fdb16a403176fe154b79c0b4d4d820" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a8/a4/20da314d277121d6534b3a980b29035dcd51e6744bd79075a6ce8fa4eb8d/pytest-8.4.2-py3-none-any.whl", hash = "sha256:872f880de3fc3a5bdc88a11b39c9710c3497a547cfa9320bc3c5e62fbf272e79", size = 365750, upload-time = "2025-09-04T14:34:20.226Z" },
]
[[package]]
name = "python-docx"
version = "1.1.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
version = "1.2.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "lxml" },
{ name = "typing-extensions" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/35/e4/386c514c53684772885009c12b67a7edd526c15157778ac1b138bc75063e/python_docx-1.1.2.tar.gz", hash = "sha256:0cf1f22e95b9002addca7948e16f2cd7acdfd498047f1941ca5d293db7762efd" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/a9/f7/eddfe33871520adab45aaa1a71f0402a2252050c14c7e3009446c8f4701c/python_docx-1.2.0.tar.gz", hash = "sha256:7bc9d7b7d8a69c9c02ca09216118c86552704edc23bac179283f2e38f86220ce", size = 5723256, upload-time = "2025-06-16T20:46:27.921Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/3e/3d/330d9efbdb816d3f60bf2ad92f05e1708e4a1b9abe80461ac3444c83f749/python_docx-1.1.2-py3-none-any.whl", hash = "sha256:08c20d6058916fb19853fcf080f7f42b6270d89eac9fa5f8c15f691c0017fabe" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d0/00/1e03a4989fa5795da308cd774f05b704ace555a70f9bf9d3be057b680bcf/python_docx-1.2.0-py3-none-any.whl", hash = "sha256:3fd478f3250fbbbfd3b94fe1e985955737c145627498896a8a6bf81f4baf66c7", size = 252987, upload-time = "2025-06-16T20:46:22.506Z" },
]
[[package]]
name = "python-pptx"
version = "1.0.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "lxml" },
{ name = "pillow" },
{ name = "typing-extensions" },
{ name = "xlsxwriter" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/52/a9/0c0db8d37b2b8a645666f7fd8accea4c6224e013c42b1d5c17c93590cd06/python_pptx-1.0.2.tar.gz", hash = "sha256:479a8af0eaf0f0d76b6f00b0887732874ad2e3188230315290cd1f9dd9cc7095" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/52/a9/0c0db8d37b2b8a645666f7fd8accea4c6224e013c42b1d5c17c93590cd06/python_pptx-1.0.2.tar.gz", hash = "sha256:479a8af0eaf0f0d76b6f00b0887732874ad2e3188230315290cd1f9dd9cc7095", size = 10109297, upload-time = "2024-08-07T17:33:37.772Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/d9/4f/00be2196329ebbff56ce564aa94efb0fbc828d00de250b1980de1a34ab49/python_pptx-1.0.2-py3-none-any.whl", hash = "sha256:160838e0b8565a8b1f67947675886e9fea18aa5e795db7ae531606d68e785cba" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/d9/4f/00be2196329ebbff56ce564aa94efb0fbc828d00de250b1980de1a34ab49/python_pptx-1.0.2-py3-none-any.whl", hash = "sha256:160838e0b8565a8b1f67947675886e9fea18aa5e795db7ae531606d68e785cba", size = 472788, upload-time = "2024-08-07T17:33:28.192Z" },
]
[[package]]
@ -383,105 +394,101 @@ test = [
[[package]]
name = "reportlab"
version = "4.4.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
version = "4.4.4"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "chardet" },
{ name = "charset-normalizer" },
{ name = "pillow" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/88/69/291a56d8bb177017e6e5421c34baa51b2e9017434c0ca1822e5007e45a26/reportlab-4.4.0.tar.gz", hash = "sha256:a64d85513910e246c21dc97ccc3c9054a1d44370bf8fc1fab80af937814354d5" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/f8/fa/ed71f3e750afb77497641eb0194aeda069e271ce6d6931140f8787e0e69a/reportlab-4.4.4.tar.gz", hash = "sha256:cb2f658b7f4a15be2cc68f7203aa67faef67213edd4f2d4bdd3eb20dab75a80d", size = 3711935, upload-time = "2025-09-19T10:43:36.502Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/52/15/4702e132ae36beb8daf3e20a92f166451148c4a89650cc9d3f19b3c66714/reportlab-4.4.0-py3-none-any.whl", hash = "sha256:0a993f1d4a765fcbdf4e26adc96b3351004ebf4d27583340595ba7edafebec32" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/57/66/e040586fe6f9ae7f3a6986186653791fb865947f0b745290ee4ab026b834/reportlab-4.4.4-py3-none-any.whl", hash = "sha256:299b3b0534e7202bb94ed2ddcd7179b818dcda7de9d8518a57c85a58a1ebaadb", size = 1954981, upload-time = "2025-09-19T10:43:33.589Z" },
]
[[package]]
name = "requests"
version = "2.32.3"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
version = "2.32.5"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "certifi" },
{ name = "charset-normalizer" },
{ name = "idna" },
{ name = "urllib3" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/63/70/2bf7780ad2d390a8d301ad0b550f1581eadbd9a20f896afe06353c2a2913/requests-2.32.3.tar.gz", hash = "sha256:55365417734eb18255590a9ff9eb97e9e1da868d4ccd6402399eaf68af20a760" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/c9/74/b3ff8e6c8446842c3f5c837e9c3dfcfe2018ea6ecef224c710c85ef728f4/requests-2.32.5.tar.gz", hash = "sha256:dbba0bac56e100853db0ea71b82b4dfd5fe2bf6d3754a8893c3af500cec7d7cf", size = 134517, upload-time = "2025-08-18T20:46:02.573Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/f9/9b/335f9764261e915ed497fcdeb11df5dfd6f7bf257d4a6a2a686d80da4d54/requests-2.32.3-py3-none-any.whl", hash = "sha256:70761cfe03c773ceb22aa2f671b4757976145175cdfca038c02654d061d6dcc6" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl", hash = "sha256:2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6", size = 64738, upload-time = "2025-08-18T20:46:00.542Z" },
]
[[package]]
name = "requests-toolbelt"
version = "1.0.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
dependencies = [
{ name = "requests" },
]
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/f3/61/d7545dafb7ac2230c70d38d31cbfe4cc64f7144dc41f6e4e4b78ecd9f5bb/requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/f3/61/d7545dafb7ac2230c70d38d31cbfe4cc64f7144dc41f6e4e4b78ecd9f5bb/requests-toolbelt-1.0.0.tar.gz", hash = "sha256:7681a0a3d047012b5bdc0ee37d7f8f07ebe76ab08caeccfc3921ce23c88d5bc6", size = 206888, upload-time = "2023-05-01T04:11:33.229Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/3f/51/d4db610ef29373b879047326cbf6fa98b6c1969d6f6dc423279de2b1be2c/requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3f/51/d4db610ef29373b879047326cbf6fa98b6c1969d6f6dc423279de2b1be2c/requests_toolbelt-1.0.0-py2.py3-none-any.whl", hash = "sha256:cccfdd665f0a24fcf4726e690f65639d272bb0637b9b92dfd91a5568ccf6bd06", size = 54481, upload-time = "2023-05-01T04:11:28.427Z" },
]
[[package]]
name = "sortedcontainers"
version = "2.4.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/e8/c4/ba2f8066cceb6f23394729afe52f3bf7adec04bf9ed2c820b39e19299111/sortedcontainers-2.4.0.tar.gz", hash = "sha256:25caa5a06cc30b6b83d11423433f65d1f9d76c4c6a0c90e3379eaa43b9bfdb88" }
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/e8/c4/ba2f8066cceb6f23394729afe52f3bf7adec04bf9ed2c820b39e19299111/sortedcontainers-2.4.0.tar.gz", hash = "sha256:25caa5a06cc30b6b83d11423433f65d1f9d76c4c6a0c90e3379eaa43b9bfdb88", size = 30594, upload-time = "2021-05-16T22:03:42.897Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl", hash = "sha256:a163dcaede0f1c021485e957a39245190e74249897e2ae4b2aa38595db237ee0" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl", hash = "sha256:a163dcaede0f1c021485e957a39245190e74249897e2ae4b2aa38595db237ee0", size = 29575, upload-time = "2021-05-16T22:03:41.177Z" },
]
[[package]]
name = "tomli"
version = "2.2.1"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/18/87/302344fed471e44a87289cf4967697d07e532f2421fdaf868a303cbae4ff/tomli-2.2.1.tar.gz", hash = "sha256:cd45e1dc79c835ce60f7404ec8119f2eb06d38b1deba146f07ced3bbc44505ff" }
version = "2.3.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/52/ed/3f73f72945444548f33eba9a87fc7a6e969915e7b1acc8260b30e1f76a2f/tomli-2.3.0.tar.gz", hash = "sha256:64be704a875d2a59753d80ee8a533c3fe183e3f06807ff7dc2232938ccb01549", size = 17392, upload-time = "2025-10-08T22:01:47.119Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/43/ca/75707e6efa2b37c77dadb324ae7d9571cb424e61ea73fad7c56c2d14527f/tomli-2.2.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:678e4fa69e4575eb77d103de3df8a895e1591b48e740211bd1067378c69e8249" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c7/16/51ae563a8615d472fdbffc43a3f3d46588c264ac4f024f63f01283becfbb/tomli-2.2.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:023aa114dd824ade0100497eb2318602af309e5a55595f76b626d6d9f3b7b0a6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/f1/dd/4f6cd1e7b160041db83c694abc78e100473c15d54620083dbd5aae7b990e/tomli-2.2.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ece47d672db52ac607a3d9599a9d48dcb2f2f735c6c2d1f34130085bb12b112a" },
{ url = "https://mirrors.aliyun.com/pypi/packages/a9/6b/c54ede5dc70d648cc6361eaf429304b02f2871a345bbdd51e993d6cdf550/tomli-2.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6972ca9c9cc9f0acaa56a8ca1ff51e7af152a9f87fb64623e31d5c83700080ee" },
{ url = "https://mirrors.aliyun.com/pypi/packages/1f/47/999514fa49cfaf7a92c805a86c3c43f4215621855d151b61c602abb38091/tomli-2.2.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c954d2250168d28797dd4e3ac5cf812a406cd5a92674ee4c8f123c889786aa8e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/73/41/0a01279a7ae09ee1573b423318e7934674ce06eb33f50936655071d81a24/tomli-2.2.1-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:8dd28b3e155b80f4d54beb40a441d366adcfe740969820caf156c019fb5c7ec4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/55/18/5d8bc5b0a0362311ce4d18830a5d28943667599a60d20118074ea1b01bb7/tomli-2.2.1-cp311-cp311-musllinux_1_2_i686.whl", hash = "sha256:e59e304978767a54663af13c07b3d1af22ddee3bb2fb0618ca1593e4f593a106" },
{ url = "https://mirrors.aliyun.com/pypi/packages/92/a3/7ade0576d17f3cdf5ff44d61390d4b3febb8a9fc2b480c75c47ea048c646/tomli-2.2.1-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:33580bccab0338d00994d7f16f4c4ec25b776af3ffaac1ed74e0b3fc95e885a8" },
{ url = "https://mirrors.aliyun.com/pypi/packages/72/6f/fa64ef058ac1446a1e51110c375339b3ec6be245af9d14c87c4a6412dd32/tomli-2.2.1-cp311-cp311-win32.whl", hash = "sha256:465af0e0875402f1d226519c9904f37254b3045fc5084697cefb9bdde1ff99ff" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6a/1c/4a2dcde4a51b81be3530565e92eda625d94dafb46dbeb15069df4caffc34/tomli-2.2.1-cp311-cp311-win_amd64.whl", hash = "sha256:2d0f2fdd22b02c6d81637a3c95f8cd77f995846af7414c5c4b8d0545afa1bc4b" },
{ url = "https://mirrors.aliyun.com/pypi/packages/52/e1/f8af4c2fcde17500422858155aeb0d7e93477a0d59a98e56cbfe75070fd0/tomli-2.2.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:4a8f6e44de52d5e6c657c9fe83b562f5f4256d8ebbfe4ff922c495620a7f6cea" },
{ url = "https://mirrors.aliyun.com/pypi/packages/03/b8/152c68bb84fc00396b83e7bbddd5ec0bd3dd409db4195e2a9b3e398ad2e3/tomli-2.2.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8d57ca8095a641b8237d5b079147646153d22552f1c637fd3ba7f4b0b29167a8" },
{ url = "https://mirrors.aliyun.com/pypi/packages/c8/d6/fc9267af9166f79ac528ff7e8c55c8181ded34eb4b0e93daa767b8841573/tomli-2.2.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e340144ad7ae1533cb897d406382b4b6fede8890a03738ff1683af800d54192" },
{ url = "https://mirrors.aliyun.com/pypi/packages/5c/51/51c3f2884d7bab89af25f678447ea7d297b53b5a3b5730a7cb2ef6069f07/tomli-2.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:db2b95f9de79181805df90bedc5a5ab4c165e6ec3fe99f970d0e302f384ad222" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ab/df/bfa89627d13a5cc22402e441e8a931ef2108403db390ff3345c05253935e/tomli-2.2.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:40741994320b232529c802f8bc86da4e1aa9f413db394617b9a256ae0f9a7f77" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9e/6e/fa2b916dced65763a5168c6ccb91066f7639bdc88b48adda990db10c8c0b/tomli-2.2.1-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:400e720fe168c0f8521520190686ef8ef033fb19fc493da09779e592861b78c6" },
{ url = "https://mirrors.aliyun.com/pypi/packages/b4/04/885d3b1f650e1153cbb93a6a9782c58a972b94ea4483ae4ac5cedd5e4a09/tomli-2.2.1-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:02abe224de6ae62c19f090f68da4e27b10af2b93213d36cf44e6e1c5abd19fdd" },
{ url = "https://mirrors.aliyun.com/pypi/packages/9c/de/6b432d66e986e501586da298e28ebeefd3edc2c780f3ad73d22566034239/tomli-2.2.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:b82ebccc8c8a36f2094e969560a1b836758481f3dc360ce9a3277c65f374285e" },
{ url = "https://mirrors.aliyun.com/pypi/packages/1c/9a/47c0449b98e6e7d1be6cbac02f93dd79003234ddc4aaab6ba07a9a7482e2/tomli-2.2.1-cp312-cp312-win32.whl", hash = "sha256:889f80ef92701b9dbb224e49ec87c645ce5df3fa2cc548664eb8a25e03127a98" },
{ url = "https://mirrors.aliyun.com/pypi/packages/ef/60/9b9638f081c6f1261e2688bd487625cd1e660d0a85bd469e91d8db969734/tomli-2.2.1-cp312-cp312-win_amd64.whl", hash = "sha256:7fc04e92e1d624a4a63c76474610238576942d6b8950a2d7f908a340494e67e4" },
{ url = "https://mirrors.aliyun.com/pypi/packages/6e/c2/61d3e0f47e2b74ef40a68b9e6ad5984f6241a942f7cd3bbfbdbd03861ea9/tomli-2.2.1-py3-none-any.whl", hash = "sha256:cb55c73c5f4408779d0cf3eef9f762b9c9f147a77de7b258bef0a5628adc85cc" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b3/2e/299f62b401438d5fe1624119c723f5d877acc86a4c2492da405626665f12/tomli-2.3.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:88bd15eb972f3664f5ed4b57c1634a97153b4bac4479dcb6a495f41921eb7f45", size = 153236, upload-time = "2025-10-08T22:01:00.137Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/86/7f/d8fffe6a7aefdb61bced88fcb5e280cfd71e08939da5894161bd71bea022/tomli-2.3.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:883b1c0d6398a6a9d29b508c331fa56adbcdff647f6ace4dfca0f50e90dfd0ba", size = 148084, upload-time = "2025-10-08T22:01:01.63Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/47/5c/24935fb6a2ee63e86d80e4d3b58b222dafaf438c416752c8b58537c8b89a/tomli-2.3.0-cp311-cp311-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d1381caf13ab9f300e30dd8feadb3de072aeb86f1d34a8569453ff32a7dea4bf", size = 234832, upload-time = "2025-10-08T22:01:02.543Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/89/da/75dfd804fc11e6612846758a23f13271b76d577e299592b4371a4ca4cd09/tomli-2.3.0-cp311-cp311-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a0e285d2649b78c0d9027570d4da3425bdb49830a6156121360b3f8511ea3441", size = 242052, upload-time = "2025-10-08T22:01:03.836Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/70/8c/f48ac899f7b3ca7eb13af73bacbc93aec37f9c954df3c08ad96991c8c373/tomli-2.3.0-cp311-cp311-musllinux_1_2_aarch64.whl", hash = "sha256:0a154a9ae14bfcf5d8917a59b51ffd5a3ac1fd149b71b47a3a104ca4edcfa845", size = 239555, upload-time = "2025-10-08T22:01:04.834Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ba/28/72f8afd73f1d0e7829bfc093f4cb98ce0a40ffc0cc997009ee1ed94ba705/tomli-2.3.0-cp311-cp311-musllinux_1_2_x86_64.whl", hash = "sha256:74bf8464ff93e413514fefd2be591c3b0b23231a77f901db1eb30d6f712fc42c", size = 245128, upload-time = "2025-10-08T22:01:05.84Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/b6/eb/a7679c8ac85208706d27436e8d421dfa39d4c914dcf5fa8083a9305f58d9/tomli-2.3.0-cp311-cp311-win32.whl", hash = "sha256:00b5f5d95bbfc7d12f91ad8c593a1659b6387b43f054104cda404be6bda62456", size = 96445, upload-time = "2025-10-08T22:01:06.896Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/0a/fe/3d3420c4cb1ad9cb462fb52967080575f15898da97e21cb6f1361d505383/tomli-2.3.0-cp311-cp311-win_amd64.whl", hash = "sha256:4dc4ce8483a5d429ab602f111a93a6ab1ed425eae3122032db7e9acf449451be", size = 107165, upload-time = "2025-10-08T22:01:08.107Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/ff/b7/40f36368fcabc518bb11c8f06379a0fd631985046c038aca08c6d6a43c6e/tomli-2.3.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:d7d86942e56ded512a594786a5ba0a5e521d02529b3826e7761a05138341a2ac", size = 154891, upload-time = "2025-10-08T22:01:09.082Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/f9/3f/d9dd692199e3b3aab2e4e4dd948abd0f790d9ded8cd10cbaae276a898434/tomli-2.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:73ee0b47d4dad1c5e996e3cd33b8a76a50167ae5f96a2607cbe8cc773506ab22", size = 148796, upload-time = "2025-10-08T22:01:10.266Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/60/83/59bff4996c2cf9f9387a0f5a3394629c7efa5ef16142076a23a90f1955fa/tomli-2.3.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:792262b94d5d0a466afb5bc63c7daa9d75520110971ee269152083270998316f", size = 242121, upload-time = "2025-10-08T22:01:11.332Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/45/e5/7c5119ff39de8693d6baab6c0b6dcb556d192c165596e9fc231ea1052041/tomli-2.3.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4f195fe57ecceac95a66a75ac24d9d5fbc98ef0962e09b2eddec5d39375aae52", size = 250070, upload-time = "2025-10-08T22:01:12.498Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/45/12/ad5126d3a278f27e6701abde51d342aa78d06e27ce2bb596a01f7709a5a2/tomli-2.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:e31d432427dcbf4d86958c184b9bfd1e96b5b71f8eb17e6d02531f434fd335b8", size = 245859, upload-time = "2025-10-08T22:01:13.551Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/fb/a1/4d6865da6a71c603cfe6ad0e6556c73c76548557a8d658f9e3b142df245f/tomli-2.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:7b0882799624980785240ab732537fcfc372601015c00f7fc367c55308c186f6", size = 250296, upload-time = "2025-10-08T22:01:14.614Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a0/b7/a7a7042715d55c9ba6e8b196d65d2cb662578b4d8cd17d882d45322b0d78/tomli-2.3.0-cp312-cp312-win32.whl", hash = "sha256:ff72b71b5d10d22ecb084d345fc26f42b5143c5533db5e2eaba7d2d335358876", size = 97124, upload-time = "2025-10-08T22:01:15.629Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/06/1e/f22f100db15a68b520664eb3328fb0ae4e90530887928558112c8d1f4515/tomli-2.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:1cb4ed918939151a03f33d4242ccd0aa5f11b3547d0cf30f7c74a408a5b99878", size = 107698, upload-time = "2025-10-08T22:01:16.51Z" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/77/b8/0135fadc89e73be292b473cb820b4f5a08197779206b33191e801feeae40/tomli-2.3.0-py3-none-any.whl", hash = "sha256:e95b1af3c5b07d9e643909b5abbec77cd9f1217e6d0bca72b0234736b9fb1f1b", size = 14408, upload-time = "2025-10-08T22:01:46.04Z" },
]
[[package]]
name = "typing-extensions"
version = "4.13.2"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/f6/37/23083fcd6e35492953e8d2aaaa68b860eb422b34627b13f2ce3eb6106061/typing_extensions-4.13.2.tar.gz", hash = "sha256:e6c81219bd689f51865d9e372991c540bda33a0379d5573cddb9a3a23f7caaef" }
version = "4.15.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/8b/54/b1ae86c0973cc6f0210b53d508ca3641fb6d0c56823f288d108bc7ab3cc8/typing_extensions-4.13.2-py3-none-any.whl", hash = "sha256:a439e7c04b49fec3e5d3e2beaa21755cadbbdc391694e28ccdd36ca4a1408f8c" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" },
]
[[package]]
name = "urllib3"
version = "2.4.0"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/8a/78/16493d9c386d8e60e442a35feac5e00f0913c0f4b7c217c11e8ec2ff53e0/urllib3-2.4.0.tar.gz", hash = "sha256:414bc6535b787febd7567804cc015fee39daab8ad86268f1310a9250697de466" }
version = "2.5.0"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/15/22/9ee70a2574a4f4599c47dd506532914ce044817c7752a79b6a51286319bc/urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760", size = 393185, upload-time = "2025-06-18T14:07:41.644Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/6b/11/cc635220681e93a0183390e26485430ca2c7b5f9d33b15c74c2861cb8091/urllib3-2.4.0-py3-none-any.whl", hash = "sha256:4e16665048960a0900c702d4a66415956a584919c03361cac9f1df5c5dd7e813" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" },
]
[[package]]
name = "xlsxwriter"
version = "3.2.3"
source = { registry = "https://mirrors.aliyun.com/pypi/simple" }
sdist = { url = "https://mirrors.aliyun.com/pypi/packages/a7/d1/e026d33dd5d552e5bf3a873dee54dad66b550230df8290d79394f09b2315/xlsxwriter-3.2.3.tar.gz", hash = "sha256:ad6fd41bdcf1b885876b1f6b7087560aecc9ae5a9cc2ba97dcac7ab2e210d3d5" }
version = "3.2.9"
source = { registry = "https://pypi.tuna.tsinghua.edu.cn/simple" }
sdist = { url = "https://pypi.tuna.tsinghua.edu.cn/packages/46/2c/c06ef49dc36e7954e55b802a8b231770d286a9758b3d936bd1e04ce5ba88/xlsxwriter-3.2.9.tar.gz", hash = "sha256:254b1c37a368c444eac6e2f867405cc9e461b0ed97a3233b2ac1e574efb4140c", size = 215940, upload-time = "2025-09-16T00:16:21.63Z" }
wheels = [
{ url = "https://mirrors.aliyun.com/pypi/packages/37/b1/a252d499f2760b314fcf264d2b36fcc4343a1ecdb25492b210cb0db70a68/XlsxWriter-3.2.3-py3-none-any.whl", hash = "sha256:593f8296e8a91790c6d0378ab08b064f34a642b3feb787cf6738236bd0a4860d" },
{ url = "https://pypi.tuna.tsinghua.edu.cn/packages/3a/0c/3662f4a66880196a590b202f0db82d919dd2f89e99a27fadef91c4a33d41/xlsxwriter-3.2.9-py3-none-any.whl", hash = "sha256:9a5db42bc5dff014806c58a20b9eae7322a134abb6fce3c92c181bfb275ec5b3", size = 175315, upload-time = "2025-09-16T00:16:20.108Z" },
]

View File

@ -141,7 +141,7 @@ def set_tenant_info(auth):
tenant_info = {
"tenant_id": tenant_id,
"llm_id": "glm-4-flash@ZHIPU-AI",
"embd_id": "BAAI/bge-large-zh-v1.5@BAAI",
"embd_id": "BAAI/bge-small-en-v1.5@Builtin",
"img2txt_id": "",
"asr_id": "",
"tts_id": None,

View File

@ -224,11 +224,10 @@ class TestDatasetCreate:
@pytest.mark.parametrize(
"name, embedding_model",
[
("BAAI/bge-large-zh-v1.5@BAAI", "BAAI/bge-large-zh-v1.5@BAAI"),
("maidalun1020/bce-embedding-base_v1@Youdao", "maidalun1020/bce-embedding-base_v1@Youdao"),
("BAAI/bge-small-en-v1.5@Builtin", "BAAI/bge-small-en-v1.5@Builtin"),
("embedding-3@ZHIPU-AI", "embedding-3@ZHIPU-AI"),
],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu"],
ids=["builtin_baai", "tenant_zhipu"],
)
def test_embedding_model(self, HttpApiAuth, name, embedding_model):
payload = {"name": name, "embedding_model": embedding_model}
@ -262,11 +261,11 @@ class TestDatasetCreate:
[
("empty", ""),
("space", " "),
("missing_at", "BAAI/bge-large-zh-v1.5BAAI"),
("missing_model_name", "@BAAI"),
("missing_provider", "BAAI/bge-large-zh-v1.5@"),
("whitespace_only_model_name", " @BAAI"),
("whitespace_only_provider", "BAAI/bge-large-zh-v1.5@ "),
("missing_at", "BAAI/bge-small-en-v1.5Builtin"),
("missing_model_name", "@Builtin"),
("missing_provider", "BAAI/bge-small-en-v1.5@"),
("whitespace_only_model_name", " @Builtin"),
("whitespace_only_provider", "BAAI/bge-small-env1.5@ "),
],
ids=["empty", "space", "missing_at", "empty_model_name", "empty_provider", "whitespace_only_model_name", "whitespace_only_provider"],
)
@ -284,14 +283,14 @@ class TestDatasetCreate:
payload = {"name": "embedding_model_unset"}
res = create_dataset(HttpApiAuth, payload)
assert res["code"] == 0, res
assert res["data"]["embedding_model"] == "BAAI/bge-large-zh-v1.5@BAAI", res
assert res["data"]["embedding_model"] == "BAAI/bge-small-en-v1.5@Builtin", res
@pytest.mark.p2
def test_embedding_model_none(self, HttpApiAuth):
payload = {"name": "embedding_model_none", "embedding_model": None}
res = create_dataset(HttpApiAuth, payload)
assert res["code"] == 0, res
assert res["data"]["embedding_model"] == "BAAI/bge-large-zh-v1.5@BAAI", res
assert res["data"]["embedding_model"] == "BAAI/bge-small-en-v1.5@Builtin", res
@pytest.mark.p1
@pytest.mark.parametrize(

View File

@ -259,11 +259,10 @@ class TestDatasetUpdate:
@pytest.mark.parametrize(
"embedding_model",
[
"BAAI/bge-large-zh-v1.5@BAAI",
"maidalun1020/bce-embedding-base_v1@Youdao",
"BAAI/bge-small-en-v1.5@Builtin",
"embedding-3@ZHIPU-AI",
],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu"],
ids=["builtin_baai", "tenant_zhipu"],
)
def test_embedding_model(self, HttpApiAuth, add_dataset_func, embedding_model):
dataset_id = add_dataset_func
@ -302,11 +301,11 @@ class TestDatasetUpdate:
[
("empty", ""),
("space", " "),
("missing_at", "BAAI/bge-large-zh-v1.5BAAI"),
("missing_model_name", "@BAAI"),
("missing_provider", "BAAI/bge-large-zh-v1.5@"),
("whitespace_only_model_name", " @BAAI"),
("whitespace_only_provider", "BAAI/bge-large-zh-v1.5@ "),
("missing_at", "BAAI/bge-small-en-v1.5Builtin"),
("missing_model_name", "@Builtin"),
("missing_provider", "BAAI/bge-small-en-v1.5@"),
("whitespace_only_model_name", " @Builtin"),
("whitespace_only_provider", "BAAI/bge-small-en-v1.5@ "),
],
ids=["empty", "space", "missing_at", "empty_model_name", "empty_provider", "whitespace_only_model_name", "whitespace_only_provider"],
)
@ -329,7 +328,7 @@ class TestDatasetUpdate:
res = list_datasets(HttpApiAuth)
assert res["code"] == 0, res
assert res["data"][0]["embedding_model"] == "BAAI/bge-large-zh-v1.5@BAAI", res
assert res["data"][0]["embedding_model"] == "BAAI/bge-small-en-v1.5@Builtin", res
@pytest.mark.p1
@pytest.mark.parametrize(

View File

@ -182,11 +182,10 @@ class TestDatasetCreate:
@pytest.mark.parametrize(
"name, embedding_model",
[
("BAAI/bge-large-zh-v1.5@BAAI", "BAAI/bge-large-zh-v1.5@BAAI"),
("maidalun1020/bce-embedding-base_v1@Youdao", "maidalun1020/bce-embedding-base_v1@Youdao"),
("BAAI/bge-small-en-v1.5@Builtin", "BAAI/bge-small-en-v1.5@Builtin"),
("embedding-3@ZHIPU-AI", "embedding-3@ZHIPU-AI"),
],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu"],
ids=["builtin_baai", "tenant_zhipu"],
)
def test_embedding_model(self, client, name, embedding_model):
payload = {"name": name, "embedding_model": embedding_model}
@ -219,11 +218,11 @@ class TestDatasetCreate:
[
("empty", ""),
("space", " "),
("missing_at", "BAAI/bge-large-zh-v1.5BAAI"),
("missing_model_name", "@BAAI"),
("missing_provider", "BAAI/bge-large-zh-v1.5@"),
("whitespace_only_model_name", " @BAAI"),
("whitespace_only_provider", "BAAI/bge-large-zh-v1.5@ "),
("missing_at", "BAAI/bge-small-en-v1.5Builtin"),
("missing_model_name", "@Builtin"),
("missing_provider", "BAAI/bge-small-en-v1.5@"),
("whitespace_only_model_name", " @Builtin"),
("whitespace_only_provider", "BAAI/bge-small-en-v1.5@ "),
],
ids=["empty", "space", "missing_at", "empty_model_name", "empty_provider", "whitespace_only_model_name", "whitespace_only_provider"],
)
@ -240,13 +239,13 @@ class TestDatasetCreate:
def test_embedding_model_unset(self, client):
payload = {"name": "embedding_model_unset"}
dataset = client.create_dataset(**payload)
assert dataset.embedding_model == "BAAI/bge-large-zh-v1.5@BAAI", str(dataset)
assert dataset.embedding_model == "BAAI/bge-small-en-v1.5@Builtin", str(dataset)
@pytest.mark.p2
def test_embedding_model_none(self, client):
payload = {"name": "embedding_model_none", "embedding_model": None}
dataset = client.create_dataset(**payload)
assert dataset.embedding_model == "BAAI/bge-large-zh-v1.5@BAAI", str(dataset)
assert dataset.embedding_model == "BAAI/bge-small-en-v1.5@Builtin", str(dataset)
@pytest.mark.p1
@pytest.mark.parametrize(

View File

@ -168,11 +168,10 @@ class TestDatasetUpdate:
@pytest.mark.parametrize(
"embedding_model",
[
"BAAI/bge-large-zh-v1.5@BAAI",
"maidalun1020/bce-embedding-base_v1@Youdao",
"BAAI/bge-small-en-v1.5@Builtin",
"embedding-3@ZHIPU-AI",
],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu"],
ids=["builtin_baai", "tenant_zhipu"],
)
def test_embedding_model(self, client, add_dataset_func, embedding_model):
dataset = add_dataset_func
@ -209,11 +208,11 @@ class TestDatasetUpdate:
[
("empty", ""),
("space", " "),
("missing_at", "BAAI/bge-large-zh-v1.5BAAI"),
("missing_model_name", "@BAAI"),
("missing_provider", "BAAI/bge-large-zh-v1.5@"),
("whitespace_only_model_name", " @BAAI"),
("whitespace_only_provider", "BAAI/bge-large-zh-v1.5@ "),
("missing_at", "BAAI/bge-small-en-v1.5Builtin"),
("missing_model_name", "@Builtin"),
("missing_provider", "BAAI/bge-small-en-v1.5@"),
("whitespace_only_model_name", " @Builtin"),
("whitespace_only_provider", "BAAI/bge-small-en-v1.5@ "),
],
ids=["empty", "space", "missing_at", "empty_model_name", "empty_provider", "whitespace_only_model_name", "whitespace_only_provider"],
)
@ -231,10 +230,10 @@ class TestDatasetUpdate:
def test_embedding_model_none(self, client, add_dataset_func):
dataset = add_dataset_func
dataset.update({"embedding_model": None})
assert dataset.embedding_model == "BAAI/bge-large-zh-v1.5@BAAI", str(dataset)
assert dataset.embedding_model == "BAAI/bge-small-en-v1.5@Builtin", str(dataset)
retrieved_dataset = client.get_dataset(name=dataset.name)
assert retrieved_dataset.embedding_model == "BAAI/bge-large-zh-v1.5@BAAI", str(retrieved_dataset)
assert retrieved_dataset.embedding_model == "BAAI/bge-small-en-v1.5@Builtin", str(retrieved_dataset)
@pytest.mark.p1
@pytest.mark.parametrize(

View File

@ -57,7 +57,7 @@ class TestAddChunk:
"payload, expected_code, expected_message",
[
({"content_with_weight": None}, 100, """TypeError("unsupported operand type(s) for +: 'NoneType' and 'str'")"""),
({"content_with_weight": ""}, 0, ""),
({"content_with_weight": ""}, 100, """Exception('Error: 413 - {"error":"Input validation error: `inputs` cannot be empty","error_type":"Validation"}')"""),
pytest.param(
{"content_with_weight": 1},
100,
@ -124,7 +124,7 @@ class TestAddChunk:
"payload, expected_code, expected_message",
[
({"content_with_weight": "chunk test", "question_kwd": ["a", "b", "c"]}, 0, ""),
({"content_with_weight": "chunk test", "question_kwd": [""]}, 0, ""),
({"content_with_weight": "chunk test", "question_kwd": [""]}, 100, """Exception('Error: 413 - {"error":"Input validation error: `inputs` cannot be empty","error_type":"Validation"}')"""),
({"content_with_weight": "chunk test", "question_kwd": [1]}, 100, "TypeError('sequence item 0: expected str instance, int found')"),
({"content_with_weight": "chunk test", "question_kwd": ["a", "a"]}, 0, ""),
({"content_with_weight": "chunk test", "question_kwd": "abc"}, 102, "`question_kwd` is required to be a list"),

View File

@ -45,7 +45,7 @@ class TestUpdateChunk:
"payload, expected_code, expected_message",
[
({"content_with_weight": None}, 100, "TypeError('expected string or bytes-like object')"),
({"content_with_weight": ""}, 0, ""),
({"content_with_weight": ""}, 100, """Exception('Error: 413 - {"error":"Input validation error: `inputs` cannot be empty","error_type":"Validation"}')"""),
({"content_with_weight": 1}, 100, "TypeError('expected string or bytes-like object')"),
({"content_with_weight": "update chunk"}, 0, ""),
({"content_with_weight": " "}, 0, ""),
@ -103,7 +103,7 @@ class TestUpdateChunk:
"payload, expected_code, expected_message",
[
({"question_kwd": ["a", "b", "c"]}, 0, ""),
({"question_kwd": [""]}, 0, ""),
({"question_kwd": [""]}, 100, """Exception('Error: 413 - {"error":"Input validation error: `inputs` cannot be empty","error_type":"Validation"}')"""),
({"question_kwd": [1]}, 100, "TypeError('sequence item 0: expected str instance, int found')"),
({"question_kwd": ["a", "a"]}, 0, ""),
({"question_kwd": "abc"}, 102, "`question_kwd` should be a list"),

View File

@ -149,11 +149,10 @@ class TestDatasetUpdate:
@pytest.mark.parametrize(
"embedding_model",
[
"BAAI/bge-large-zh-v1.5@BAAI",
"maidalun1020/bce-embedding-base_v1@Youdao",
"BAAI/bge-small-en-v1.5@Builtin",
"embedding-3@ZHIPU-AI",
],
ids=["builtin_baai", "builtin_youdao", "tenant_zhipu"],
ids=["builtin_baai", "tenant_zhipu"],
)
def test_embedding_model(self, WebApiAuth, add_dataset_func, embedding_model):
kb_id = add_dataset_func

4220
uv.lock generated

File diff suppressed because it is too large Load Diff