Don't release full image (#10654)

### What problem does this PR solve?

Introduced gpu profile in .env
Added Dockerfile_tei
fix datrie
Removed LIGHTEN flag

### Type of change

- [x] Documentation Update
- [x] Refactoring
This commit is contained in:
Zhichang Yu
2025-10-23 23:02:27 +08:00
committed by GitHub
parent 92739ea804
commit 73144e278b
67 changed files with 2792 additions and 3608 deletions

View File

@ -14,21 +14,14 @@
# limitations under the License.
#
import json
import os
import re
import threading
from abc import ABC
from collections.abc import Iterable
from urllib.parse import urljoin
import httpx
import numpy as np
import requests
from huggingface_hub import snapshot_download
from yarl import URL
from api import settings
from api.utils.file_utils import get_home_cache_dir
from api.utils.log_utils import log_exception
from rag.utils import num_tokens_from_string, truncate, total_token_count_from_response
@ -47,100 +40,6 @@ class Base(ABC):
return total_token_count_from_response(resp)
class DefaultRerank(Base):
_FACTORY_NAME = "BAAI"
_model = None
_model_lock = threading.Lock()
def __init__(self, key, model_name, **kwargs):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not settings.LIGHTEN and not DefaultRerank._model:
import torch
from FlagEmbedding import FlagReranker
with DefaultRerank._model_lock:
if not DefaultRerank._model:
try:
DefaultRerank._model = FlagReranker(os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), use_fp16=torch.cuda.is_available())
except Exception:
model_dir = snapshot_download(repo_id=model_name, local_dir=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)), local_dir_use_symlinks=False)
DefaultRerank._model = FlagReranker(model_dir, use_fp16=torch.cuda.is_available())
self._model = DefaultRerank._model
self._dynamic_batch_size = 8
self._min_batch_size = 1
def torch_empty_cache(self):
try:
import torch
torch.cuda.empty_cache()
except Exception as e:
log_exception(e)
def _process_batch(self, pairs, max_batch_size=None):
"""template method for subclass call"""
old_dynamic_batch_size = self._dynamic_batch_size
if max_batch_size is not None:
self._dynamic_batch_size = max_batch_size
res = np.array(len(pairs), dtype=float)
i = 0
while i < len(pairs):
cur_i = i
current_batch = self._dynamic_batch_size
max_retries = 5
retry_count = 0
while retry_count < max_retries:
try:
# call subclass implemented batch processing calculation
batch_scores = self._compute_batch_scores(pairs[i : i + current_batch])
res[i : i + current_batch] = batch_scores
i += current_batch
self._dynamic_batch_size = min(self._dynamic_batch_size * 2, 8)
break
except RuntimeError as e:
if "CUDA out of memory" in str(e) and current_batch > self._min_batch_size:
current_batch = max(current_batch // 2, self._min_batch_size)
self.torch_empty_cache()
i = cur_i # reset i to the start of the current batch
retry_count += 1
else:
raise
if retry_count >= max_retries:
raise RuntimeError("max retry times, still cannot process batch, please check your GPU memory")
self.torch_empty_cache()
self._dynamic_batch_size = old_dynamic_batch_size
return np.array(res)
def _compute_batch_scores(self, batch_pairs, max_length=None):
if max_length is None:
scores = self._model.compute_score(batch_pairs, normalize=True)
else:
scores = self._model.compute_score(batch_pairs, max_length=max_length, normalize=True)
if not isinstance(scores, Iterable):
scores = [scores]
return scores
def similarity(self, query: str, texts: list):
pairs = [(query, truncate(t, 2048)) for t in texts]
token_count = 0
for _, t in pairs:
token_count += num_tokens_from_string(t)
batch_size = 4096
res = self._process_batch(pairs, max_batch_size=batch_size)
return np.array(res), token_count
class JinaRerank(Base):
_FACTORY_NAME = "Jina"
@ -162,36 +61,6 @@ class JinaRerank(Base):
return rank, self.total_token_count(res)
class YoudaoRerank(DefaultRerank):
_FACTORY_NAME = "Youdao"
_model = None
_model_lock = threading.Lock()
def __init__(self, key=None, model_name="maidalun1020/bce-reranker-base_v1", **kwargs):
if not settings.LIGHTEN and not YoudaoRerank._model:
from BCEmbedding import RerankerModel
with YoudaoRerank._model_lock:
if not YoudaoRerank._model:
try:
YoudaoRerank._model = RerankerModel(model_name_or_path=os.path.join(get_home_cache_dir(), re.sub(r"^[a-zA-Z0-9]+/", "", model_name)))
except Exception:
YoudaoRerank._model = RerankerModel(model_name_or_path=model_name.replace("maidalun1020", "InfiniFlow"))
self._model = YoudaoRerank._model
self._dynamic_batch_size = 8
self._min_batch_size = 1
def similarity(self, query: str, texts: list):
pairs = [(query, truncate(t, self._model.max_length)) for t in texts]
token_count = 0
for _, t in pairs:
token_count += num_tokens_from_string(t)
batch_size = 8
res = self._process_batch(pairs, max_batch_size=batch_size)
return np.array(res), token_count
class XInferenceRerank(Base):
_FACTORY_NAME = "Xinference"
@ -514,7 +383,7 @@ class QWenRerank(Base):
raise ValueError(f"Error calling QWenRerank model {self.model_name}: {resp.status_code} - {resp.text}")
class HuggingfaceRerank(DefaultRerank):
class HuggingfaceRerank(Base):
_FACTORY_NAME = "HuggingFace"
@staticmethod