mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Refactor graphrag to remove redis lock (#5828)
### What problem does this PR solve? Refactor graphrag to remove redis lock ### Type of change - [x] Refactoring
This commit is contained in:
103
rag/raptor.py
103
rag/raptor.py
@ -15,18 +15,25 @@
|
||||
#
|
||||
import logging
|
||||
import re
|
||||
from threading import Lock
|
||||
import umap
|
||||
import numpy as np
|
||||
from sklearn.mixture import GaussianMixture
|
||||
import trio
|
||||
|
||||
from graphrag.utils import get_llm_cache, get_embed_cache, set_embed_cache, set_llm_cache, chat_limiter
|
||||
from graphrag.utils import (
|
||||
get_llm_cache,
|
||||
get_embed_cache,
|
||||
set_embed_cache,
|
||||
set_llm_cache,
|
||||
chat_limiter,
|
||||
)
|
||||
from rag.utils import truncate
|
||||
|
||||
|
||||
class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
def __init__(self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1):
|
||||
def __init__(
|
||||
self, max_cluster, llm_model, embd_model, prompt, max_token=512, threshold=0.1
|
||||
):
|
||||
self._max_cluster = max_cluster
|
||||
self._llm_model = llm_model
|
||||
self._embd_model = embd_model
|
||||
@ -34,22 +41,24 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
self._prompt = prompt
|
||||
self._max_token = max_token
|
||||
|
||||
def _chat(self, system, history, gen_conf):
|
||||
async def _chat(self, system, history, gen_conf):
|
||||
response = get_llm_cache(self._llm_model.llm_name, system, history, gen_conf)
|
||||
if response:
|
||||
return response
|
||||
response = self._llm_model.chat(system, history, gen_conf)
|
||||
response = await trio.to_thread.run_sync(
|
||||
lambda: self._llm_model.chat(system, history, gen_conf)
|
||||
)
|
||||
response = re.sub(r"<think>.*</think>", "", response, flags=re.DOTALL)
|
||||
if response.find("**ERROR**") >= 0:
|
||||
raise Exception(response)
|
||||
set_llm_cache(self._llm_model.llm_name, system, response, history, gen_conf)
|
||||
return response
|
||||
|
||||
def _embedding_encode(self, txt):
|
||||
async def _embedding_encode(self, txt):
|
||||
response = get_embed_cache(self._embd_model.llm_name, txt)
|
||||
if response is not None:
|
||||
return response
|
||||
embds, _ = self._embd_model.encode([txt])
|
||||
embds, _ = await trio.to_thread.run_sync(lambda: self._embd_model.encode([txt]))
|
||||
if len(embds) < 1 or len(embds[0]) < 1:
|
||||
raise Exception("Embedding error: ")
|
||||
embds = embds[0]
|
||||
@ -74,36 +83,48 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
return []
|
||||
chunks = [(s, a) for s, a in chunks if s and len(a) > 0]
|
||||
|
||||
async def summarize(ck_idx, lock):
|
||||
async def summarize(ck_idx: list[int]):
|
||||
nonlocal chunks
|
||||
try:
|
||||
texts = [chunks[i][0] for i in ck_idx]
|
||||
len_per_chunk = int((self._llm_model.max_length - self._max_token) / len(texts))
|
||||
cluster_content = "\n".join([truncate(t, max(1, len_per_chunk)) for t in texts])
|
||||
async with chat_limiter:
|
||||
cnt = await trio.to_thread.run_sync(lambda: self._chat("You're a helpful assistant.",
|
||||
[{"role": "user",
|
||||
"content": self._prompt.format(cluster_content=cluster_content)}],
|
||||
{"temperature": 0.3, "max_tokens": self._max_token}
|
||||
))
|
||||
cnt = re.sub("(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)", "",
|
||||
cnt)
|
||||
logging.debug(f"SUM: {cnt}")
|
||||
embds, _ = self._embd_model.encode([cnt])
|
||||
with lock:
|
||||
chunks.append((cnt, self._embedding_encode(cnt)))
|
||||
except Exception as e:
|
||||
logging.exception("summarize got exception")
|
||||
return e
|
||||
texts = [chunks[i][0] for i in ck_idx]
|
||||
len_per_chunk = int(
|
||||
(self._llm_model.max_length - self._max_token) / len(texts)
|
||||
)
|
||||
cluster_content = "\n".join(
|
||||
[truncate(t, max(1, len_per_chunk)) for t in texts]
|
||||
)
|
||||
async with chat_limiter:
|
||||
cnt = await self._chat(
|
||||
"You're a helpful assistant.",
|
||||
[
|
||||
{
|
||||
"role": "user",
|
||||
"content": self._prompt.format(
|
||||
cluster_content=cluster_content
|
||||
),
|
||||
}
|
||||
],
|
||||
{"temperature": 0.3, "max_tokens": self._max_token},
|
||||
)
|
||||
cnt = re.sub(
|
||||
"(······\n由于长度的原因,回答被截断了,要继续吗?|For the content length reason, it stopped, continue?)",
|
||||
"",
|
||||
cnt,
|
||||
)
|
||||
logging.debug(f"SUM: {cnt}")
|
||||
embds = await self._embedding_encode(cnt)
|
||||
chunks.append((cnt, embds))
|
||||
|
||||
labels = []
|
||||
lock = Lock()
|
||||
while end - start > 1:
|
||||
embeddings = [embd for _, embd in chunks[start: end]]
|
||||
embeddings = [embd for _, embd in chunks[start:end]]
|
||||
if len(embeddings) == 2:
|
||||
await summarize([start, start + 1], lock)
|
||||
await summarize([start, start + 1])
|
||||
if callback:
|
||||
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
|
||||
callback(
|
||||
msg="Cluster one layer: {} -> {}".format(
|
||||
end - start, len(chunks) - end
|
||||
)
|
||||
)
|
||||
labels.extend([0, 0])
|
||||
layers.append((end, len(chunks)))
|
||||
start = end
|
||||
@ -112,7 +133,9 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
|
||||
n_neighbors = int((len(embeddings) - 1) ** 0.8)
|
||||
reduced_embeddings = umap.UMAP(
|
||||
n_neighbors=max(2, n_neighbors), n_components=min(12, len(embeddings) - 2), metric="cosine"
|
||||
n_neighbors=max(2, n_neighbors),
|
||||
n_components=min(12, len(embeddings) - 2),
|
||||
metric="cosine",
|
||||
).fit_transform(embeddings)
|
||||
n_clusters = self._get_optimal_clusters(reduced_embeddings, random_state)
|
||||
if n_clusters == 1:
|
||||
@ -127,18 +150,22 @@ class RecursiveAbstractiveProcessing4TreeOrganizedRetrieval:
|
||||
async with trio.open_nursery() as nursery:
|
||||
for c in range(n_clusters):
|
||||
ck_idx = [i + start for i in range(len(lbls)) if lbls[i] == c]
|
||||
if not ck_idx:
|
||||
continue
|
||||
assert len(ck_idx) > 0
|
||||
async with chat_limiter:
|
||||
nursery.start_soon(lambda: summarize(ck_idx, lock))
|
||||
nursery.start_soon(lambda: summarize(ck_idx))
|
||||
|
||||
assert len(chunks) - end == n_clusters, "{} vs. {}".format(len(chunks) - end, n_clusters)
|
||||
assert len(chunks) - end == n_clusters, "{} vs. {}".format(
|
||||
len(chunks) - end, n_clusters
|
||||
)
|
||||
labels.extend(lbls)
|
||||
layers.append((end, len(chunks)))
|
||||
if callback:
|
||||
callback(msg="Cluster one layer: {} -> {}".format(end - start, len(chunks) - end))
|
||||
callback(
|
||||
msg="Cluster one layer: {} -> {}".format(
|
||||
end - start, len(chunks) - end
|
||||
)
|
||||
)
|
||||
start = end
|
||||
end = len(chunks)
|
||||
|
||||
return chunks
|
||||
|
||||
|
||||
@ -20,9 +20,7 @@ import random
|
||||
import sys
|
||||
|
||||
from api.utils.log_utils import initRootLogger, get_project_base_directory
|
||||
from graphrag.general.index import WithCommunity, WithResolution, Dealer
|
||||
from graphrag.light.graph_extractor import GraphExtractor as LightKGExt
|
||||
from graphrag.general.graph_extractor import GraphExtractor as GeneralKGExt
|
||||
from graphrag.general.index import run_graphrag
|
||||
from graphrag.utils import get_llm_cache, set_llm_cache, get_tags_from_cache, set_tags_to_cache
|
||||
from rag.prompts import keyword_extraction, question_proposal, content_tagging
|
||||
|
||||
@ -45,6 +43,7 @@ import tracemalloc
|
||||
import resource
|
||||
import signal
|
||||
import trio
|
||||
import exceptiongroup
|
||||
|
||||
import numpy as np
|
||||
from peewee import DoesNotExist
|
||||
@ -453,24 +452,6 @@ async def run_raptor(row, chat_mdl, embd_mdl, vector_size, callback=None):
|
||||
return res, tk_count
|
||||
|
||||
|
||||
async def run_graphrag(row, chat_model, language, embedding_model, callback=None):
|
||||
chunks = []
|
||||
for d in settings.retrievaler.chunk_list(row["doc_id"], row["tenant_id"], [str(row["kb_id"])],
|
||||
fields=["content_with_weight", "doc_id"]):
|
||||
chunks.append((d["doc_id"], d["content_with_weight"]))
|
||||
|
||||
dealer = Dealer(LightKGExt if row["parser_config"]["graphrag"]["method"] != 'general' else GeneralKGExt,
|
||||
row["tenant_id"],
|
||||
str(row["kb_id"]),
|
||||
chat_model,
|
||||
chunks=chunks,
|
||||
language=language,
|
||||
entity_types=row["parser_config"]["graphrag"]["entity_types"],
|
||||
embed_bdl=embedding_model,
|
||||
callback=callback)
|
||||
await dealer()
|
||||
|
||||
|
||||
async def do_handle_task(task):
|
||||
task_id = task["id"]
|
||||
task_from_page = task["from_page"]
|
||||
@ -526,24 +507,10 @@ async def do_handle_task(task):
|
||||
return
|
||||
start_ts = timer()
|
||||
chat_model = LLMBundle(task_tenant_id, LLMType.CHAT, llm_name=task_llm_id, lang=task_language)
|
||||
await run_graphrag(task, chat_model, task_language, embedding_model, progress_callback)
|
||||
progress_callback(prog=1.0, msg="Knowledge Graph basic is done ({:.2f}s)".format(timer() - start_ts))
|
||||
if graphrag_conf.get("resolution", False):
|
||||
start_ts = timer()
|
||||
with_res = WithResolution(
|
||||
task["tenant_id"], str(task["kb_id"]), chat_model, embedding_model,
|
||||
progress_callback
|
||||
)
|
||||
await with_res()
|
||||
progress_callback(prog=1.0, msg="Knowledge Graph resolution is done ({:.2f}s)".format(timer() - start_ts))
|
||||
if graphrag_conf.get("community", False):
|
||||
start_ts = timer()
|
||||
with_comm = WithCommunity(
|
||||
task["tenant_id"], str(task["kb_id"]), chat_model, embedding_model,
|
||||
progress_callback
|
||||
)
|
||||
await with_comm()
|
||||
progress_callback(prog=1.0, msg="Knowledge Graph community is done ({:.2f}s)".format(timer() - start_ts))
|
||||
with_resolution = graphrag_conf.get("resolution", False)
|
||||
with_community = graphrag_conf.get("community", False)
|
||||
await run_graphrag(task, task_language, with_resolution, with_community, chat_model, embedding_model, progress_callback)
|
||||
progress_callback(prog=1.0, msg="Knowledge Graph done ({:.2f}s)".format(timer() - start_ts))
|
||||
return
|
||||
else:
|
||||
# Standard chunking methods
|
||||
@ -622,7 +589,11 @@ async def handle_task():
|
||||
FAILED_TASKS += 1
|
||||
CURRENT_TASKS.pop(task["id"], None)
|
||||
try:
|
||||
set_progress(task["id"], prog=-1, msg=f"[Exception]: {e}")
|
||||
err_msg = str(e)
|
||||
while isinstance(e, exceptiongroup.ExceptionGroup):
|
||||
e = e.exceptions[0]
|
||||
err_msg += ' -- ' + str(e)
|
||||
set_progress(task["id"], prog=-1, msg=f"[Exception]: {err_msg}")
|
||||
except Exception:
|
||||
pass
|
||||
logging.exception(f"handle_task got exception for task {json.dumps(task)}")
|
||||
|
||||
@ -16,13 +16,12 @@
|
||||
|
||||
import logging
|
||||
import json
|
||||
import time
|
||||
import uuid
|
||||
|
||||
import valkey as redis
|
||||
from rag import settings
|
||||
from rag.utils import singleton
|
||||
|
||||
from valkey.lock import Lock
|
||||
|
||||
class RedisMsg:
|
||||
def __init__(self, consumer, queue_name, group_name, msg_id, message):
|
||||
@ -281,29 +280,23 @@ REDIS_CONN = RedisDB()
|
||||
|
||||
|
||||
class RedisDistributedLock:
|
||||
def __init__(self, lock_key, timeout=10):
|
||||
def __init__(self, lock_key, lock_value=None, timeout=10, blocking_timeout=1):
|
||||
self.lock_key = lock_key
|
||||
self.lock_value = str(uuid.uuid4())
|
||||
if lock_value:
|
||||
self.lock_value = lock_value
|
||||
else:
|
||||
self.lock_value = str(uuid.uuid4())
|
||||
self.timeout = timeout
|
||||
self.lock = Lock(REDIS_CONN.REDIS, lock_key, timeout=timeout, blocking_timeout=blocking_timeout)
|
||||
|
||||
@staticmethod
|
||||
def clean_lock(lock_key):
|
||||
REDIS_CONN.REDIS.delete(lock_key)
|
||||
def acquire(self):
|
||||
return self.lock.acquire()
|
||||
|
||||
def acquire_lock(self):
|
||||
end_time = time.time() + self.timeout
|
||||
while time.time() < end_time:
|
||||
if REDIS_CONN.REDIS.setnx(self.lock_key, self.lock_value):
|
||||
return True
|
||||
time.sleep(1)
|
||||
return False
|
||||
|
||||
def release_lock(self):
|
||||
if REDIS_CONN.REDIS.get(self.lock_key) == self.lock_value:
|
||||
REDIS_CONN.REDIS.delete(self.lock_key)
|
||||
def release(self):
|
||||
return self.lock.release()
|
||||
|
||||
def __enter__(self):
|
||||
self.acquire_lock()
|
||||
self.acquire()
|
||||
|
||||
def __exit__(self, exception_type, exception_value, exception_traceback):
|
||||
self.release_lock()
|
||||
self.release()
|
||||
Reference in New Issue
Block a user