Format file format from Windows/dos to Unix (#1949)

### What problem does this PR solve?

Related source file is in Windows/DOS format, they are format to Unix
format.

### Type of change

- [x] Refactoring

Signed-off-by: Jin Hai <haijin.chn@gmail.com>
This commit is contained in:
Jin Hai
2024-08-15 09:17:36 +08:00
committed by GitHub
parent 1328d715db
commit 6b3a40be5c
108 changed files with 36399 additions and 36399 deletions

View File

@ -1,61 +1,61 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pdfplumber
from .ocr import OCR
from .recognizer import Recognizer
from .layout_recognizer import LayoutRecognizer
from .table_structure_recognizer import TableStructureRecognizer
def init_in_out(args):
from PIL import Image
import os
import traceback
from api.utils.file_utils import traversal_files
images = []
outputs = []
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
def pdf_pages(fnm, zoomin=3):
nonlocal outputs, images
pdf = pdfplumber.open(fnm)
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(pdf.pages)]
for i, page in enumerate(images):
outputs.append(os.path.split(fnm)[-1] + f"_{i}.jpg")
def images_and_outputs(fnm):
nonlocal outputs, images
if fnm.split(".")[-1].lower() == "pdf":
pdf_pages(fnm)
return
try:
images.append(Image.open(fnm))
outputs.append(os.path.split(fnm)[-1])
except Exception as e:
traceback.print_exc()
if os.path.isdir(args.inputs):
for fnm in traversal_files(args.inputs):
images_and_outputs(fnm)
else:
images_and_outputs(args.inputs)
for i in range(len(outputs)): outputs[i] = os.path.join(args.output_dir, outputs[i])
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import pdfplumber
from .ocr import OCR
from .recognizer import Recognizer
from .layout_recognizer import LayoutRecognizer
from .table_structure_recognizer import TableStructureRecognizer
def init_in_out(args):
from PIL import Image
import os
import traceback
from api.utils.file_utils import traversal_files
images = []
outputs = []
if not os.path.exists(args.output_dir):
os.mkdir(args.output_dir)
def pdf_pages(fnm, zoomin=3):
nonlocal outputs, images
pdf = pdfplumber.open(fnm)
images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(pdf.pages)]
for i, page in enumerate(images):
outputs.append(os.path.split(fnm)[-1] + f"_{i}.jpg")
def images_and_outputs(fnm):
nonlocal outputs, images
if fnm.split(".")[-1].lower() == "pdf":
pdf_pages(fnm)
return
try:
images.append(Image.open(fnm))
outputs.append(os.path.split(fnm)[-1])
except Exception as e:
traceback.print_exc()
if os.path.isdir(args.inputs):
for fnm in traversal_files(args.inputs):
images_and_outputs(fnm)
else:
images_and_outputs(args.inputs)
for i in range(len(outputs)): outputs[i] = os.path.join(args.output_dir, outputs[i])
return images, outputs

View File

@ -1,151 +1,151 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import re
from collections import Counter
from copy import deepcopy
import numpy as np
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import Recognizer
class LayoutRecognizer(Recognizer):
labels = [
"_background_",
"Text",
"Title",
"Figure",
"Figure caption",
"Table",
"Table caption",
"Header",
"Footer",
"Reference",
"Equation",
]
def __init__(self, domain):
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
super().__init__(self.labels, domain, model_dir)
except Exception as e:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
super().__init__(self.labels, domain, model_dir)
self.garbage_layouts = ["footer", "header", "reference"]
def __call__(self, image_list, ocr_res, scale_factor=3,
thr=0.2, batch_size=16, drop=True):
def __is_garbage(b):
patt = [r"^•+$", r"(版权归©|免责条款|地址[:])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
"(资料|数据)来源[:]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}",
"\\(cid *: *[0-9]+ *\\)"
]
return any([re.search(p, b["text"]) for p in patt])
layouts = super().__call__(image_list, thr, batch_size)
# save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7)
assert len(image_list) == len(ocr_res)
# Tag layout type
boxes = []
assert len(image_list) == len(layouts)
garbages = {}
page_layout = []
for pn, lts in enumerate(layouts):
bxs = ocr_res[pn]
lts = [{"type": b["type"],
"score": float(b["score"]),
"x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
"top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
"page_number": pn,
} for b in lts if float(b["score"]) >= 0.8 or b["type"] not in self.garbage_layouts]
lts = self.sort_Y_firstly(lts, np.mean(
[l["bottom"] - l["top"] for l in lts]) / 2)
lts = self.layouts_cleanup(bxs, lts)
page_layout.append(lts)
# Tag layout type, layouts are ready
def findLayout(ty):
nonlocal bxs, lts, self
lts_ = [lt for lt in lts if lt["type"] == ty]
i = 0
while i < len(bxs):
if bxs[i].get("layout_type"):
i += 1
continue
if __is_garbage(bxs[i]):
bxs.pop(i)
continue
ii = self.find_overlapped_with_threashold(bxs[i], lts_,
thr=0.4)
if ii is None: # belong to nothing
bxs[i]["layout_type"] = ""
i += 1
continue
lts_[ii]["visited"] = True
keep_feats = [
lts_[
ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
lts_[
ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
]
if drop and lts_[
ii]["type"] in self.garbage_layouts and not any(keep_feats):
if lts_[ii]["type"] not in garbages:
garbages[lts_[ii]["type"]] = []
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
bxs.pop(i)
continue
bxs[i]["layoutno"] = f"{ty}-{ii}"
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[
ii]["type"] != "equation" else "figure"
i += 1
for lt in ["footer", "header", "reference", "figure caption",
"table caption", "title", "table", "text", "figure", "equation"]:
findLayout(lt)
# add box to figure layouts which has not text box
for i, lt in enumerate(
[lt for lt in lts if lt["type"] in ["figure", "equation"]]):
if lt.get("visited"):
continue
lt = deepcopy(lt)
del lt["type"]
lt["text"] = ""
lt["layout_type"] = "figure"
lt["layoutno"] = f"figure-{i}"
bxs.append(lt)
boxes.extend(bxs)
ocr_res = boxes
garbag_set = set()
for k in garbages.keys():
garbages[k] = Counter(garbages[k])
for g, c in garbages[k].items():
if c > 1:
garbag_set.add(g)
ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
return ocr_res, page_layout
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import re
from collections import Counter
from copy import deepcopy
import numpy as np
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from deepdoc.vision import Recognizer
class LayoutRecognizer(Recognizer):
labels = [
"_background_",
"Text",
"Title",
"Figure",
"Figure caption",
"Table",
"Table caption",
"Header",
"Footer",
"Reference",
"Equation",
]
def __init__(self, domain):
try:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
super().__init__(self.labels, domain, model_dir)
except Exception as e:
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
super().__init__(self.labels, domain, model_dir)
self.garbage_layouts = ["footer", "header", "reference"]
def __call__(self, image_list, ocr_res, scale_factor=3,
thr=0.2, batch_size=16, drop=True):
def __is_garbage(b):
patt = [r"^•+$", r"(版权归©|免责条款|地址[:])", r"\.{3,}", "^[0-9]{1,2} / ?[0-9]{1,2}$",
r"^[0-9]{1,2} of [0-9]{1,2}$", "^http://[^ ]{12,}",
"(资料|数据)来源[:]", "[0-9a-z._-]+@[a-z0-9-]+\\.[a-z]{2,3}",
"\\(cid *: *[0-9]+ *\\)"
]
return any([re.search(p, b["text"]) for p in patt])
layouts = super().__call__(image_list, thr, batch_size)
# save_results(image_list, layouts, self.labels, output_dir='output/', threshold=0.7)
assert len(image_list) == len(ocr_res)
# Tag layout type
boxes = []
assert len(image_list) == len(layouts)
garbages = {}
page_layout = []
for pn, lts in enumerate(layouts):
bxs = ocr_res[pn]
lts = [{"type": b["type"],
"score": float(b["score"]),
"x0": b["bbox"][0] / scale_factor, "x1": b["bbox"][2] / scale_factor,
"top": b["bbox"][1] / scale_factor, "bottom": b["bbox"][-1] / scale_factor,
"page_number": pn,
} for b in lts if float(b["score"]) >= 0.8 or b["type"] not in self.garbage_layouts]
lts = self.sort_Y_firstly(lts, np.mean(
[l["bottom"] - l["top"] for l in lts]) / 2)
lts = self.layouts_cleanup(bxs, lts)
page_layout.append(lts)
# Tag layout type, layouts are ready
def findLayout(ty):
nonlocal bxs, lts, self
lts_ = [lt for lt in lts if lt["type"] == ty]
i = 0
while i < len(bxs):
if bxs[i].get("layout_type"):
i += 1
continue
if __is_garbage(bxs[i]):
bxs.pop(i)
continue
ii = self.find_overlapped_with_threashold(bxs[i], lts_,
thr=0.4)
if ii is None: # belong to nothing
bxs[i]["layout_type"] = ""
i += 1
continue
lts_[ii]["visited"] = True
keep_feats = [
lts_[
ii]["type"] == "footer" and bxs[i]["bottom"] < image_list[pn].size[1] * 0.9 / scale_factor,
lts_[
ii]["type"] == "header" and bxs[i]["top"] > image_list[pn].size[1] * 0.1 / scale_factor,
]
if drop and lts_[
ii]["type"] in self.garbage_layouts and not any(keep_feats):
if lts_[ii]["type"] not in garbages:
garbages[lts_[ii]["type"]] = []
garbages[lts_[ii]["type"]].append(bxs[i]["text"])
bxs.pop(i)
continue
bxs[i]["layoutno"] = f"{ty}-{ii}"
bxs[i]["layout_type"] = lts_[ii]["type"] if lts_[
ii]["type"] != "equation" else "figure"
i += 1
for lt in ["footer", "header", "reference", "figure caption",
"table caption", "title", "table", "text", "figure", "equation"]:
findLayout(lt)
# add box to figure layouts which has not text box
for i, lt in enumerate(
[lt for lt in lts if lt["type"] in ["figure", "equation"]]):
if lt.get("visited"):
continue
lt = deepcopy(lt)
del lt["type"]
lt["text"] = ""
lt["layout_type"] = "figure"
lt["layoutno"] = f"figure-{i}"
bxs.append(lt)
boxes.extend(bxs)
ocr_res = boxes
garbag_set = set()
for k in garbages.keys():
garbages[k] = Counter(garbages[k])
for g, c in garbages[k].items():
if c > 1:
garbag_set.add(g)
ocr_res = [b for b in ocr_res if b["text"].strip() not in garbag_set]
return ocr_res, page_layout

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,366 +1,366 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper
def build_post_process(config, global_config=None):
support_dict = ['DBPostProcess', 'CTCLabelDecode']
config = copy.deepcopy(config)
module_name = config.pop('name')
if module_name == "None":
return
if global_config is not None:
config.update(global_config)
assert module_name in support_dict, Exception(
'post process only support {}'.format(support_dict))
module_class = eval(module_name)(**config)
return module_class
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
use_dilation=False,
score_mode="fast",
box_type='quad',
**kwargs):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
self.min_size = 3
self.score_mode = score_mode
self.box_type = box_type
assert score_mode in [
"slow", "fast"
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
self.dilation_kernel = None if not use_dilation else np.array(
[[1, 1], [1, 1]])
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap = _bitmap
height, width = bitmap.shape
boxes = []
scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_candidates]:
epsilon = 0.002 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue
if points.shape[0] > 2:
box = self.unclip(points, self.unclip_ratio)
if len(box) > 1:
continue
else:
continue
box = box.reshape(-1, 2)
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box.tolist())
scores.append(score)
return boxes, scores
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap = _bitmap
height, width = bitmap.shape
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
num_contours = min(len(contours), self.max_candidates)
boxes = []
scores = []
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
if self.score_mode == "fast":
score = self.box_score_fast(pred, points.reshape(-1, 2))
else:
score = self.box_score_slow(pred, contour)
if self.box_thresh > score:
continue
box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box.astype("int32"))
scores.append(score)
return np.array(boxes, dtype="int32"), scores
def unclip(self, box, unclip_ratio):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
'''
box_score_fast: use bbox mean score as the mean score
'''
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def box_score_slow(self, bitmap, contour):
'''
box_score_slow: use polyon mean score as the mean score
'''
h, w = bitmap.shape[:2]
contour = contour.copy()
contour = np.reshape(contour, (-1, 2))
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
contour[:, 0] = contour[:, 0] - xmin
contour[:, 1] = contour[:, 1] - ymin
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps']
if not isinstance(pred, np.ndarray):
pred = pred.numpy()
pred = pred[:, 0, :, :]
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
if self.dilation_kernel is not None:
mask = cv2.dilate(
np.array(segmentation[batch_index]).astype(np.uint8),
self.dilation_kernel)
else:
mask = segmentation[batch_index]
if self.box_type == 'poly':
boxes, scores = self.polygons_from_bitmap(pred[batch_index],
mask, src_w, src_h)
elif self.box_type == 'quad':
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
src_w, src_h)
else:
raise ValueError(
"box_type can only be one of ['quad', 'poly']")
boxes_batch.append({'points': boxes})
return boxes_batch
class BaseRecLabelDecode(object):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False):
self.beg_str = "sos"
self.end_str = "eos"
self.reverse = False
self.character_str = []
if character_dict_path is None:
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
else:
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str.append(line)
if use_space_char:
self.character_str.append(" ")
dict_character = list(self.character_str)
if 'arabic' in character_dict_path:
self.reverse = True
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def pred_reverse(self, pred):
pred_re = []
c_current = ''
for c in pred:
if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
if c_current != '':
pred_re.append(c_current)
pred_re.append(c)
c_current = ''
else:
c_current += c
if c_current != '':
pred_re.append(c_current)
return ''.join(pred_re[::-1])
def add_special_char(self, dict_character):
return dict_character
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
if is_remove_duplicate:
selection[1:] = text_index[batch_idx][1:] != text_index[
batch_idx][:-1]
for ignored_token in ignored_tokens:
selection &= text_index[batch_idx] != ignored_token
char_list = [
self.character[text_id]
for text_id in text_index[batch_idx][selection]
]
if text_prob is not None:
conf_list = text_prob[batch_idx][selection]
else:
conf_list = [1] * len(selection)
if len(conf_list) == 0:
conf_list = [0]
text = ''.join(char_list)
if self.reverse: # for arabic rec
text = self.pred_reverse(text)
result_list.append((text, np.mean(conf_list).tolist()))
return result_list
def get_ignored_tokens(self):
return [0] # for ctc blank
class CTCLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(CTCLabelDecode, self).__init__(character_dict_path,
use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, tuple) or isinstance(preds, list):
preds = preds[-1]
if not isinstance(preds, np.ndarray):
preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
if label is None:
return text
label = self.decode(label)
return text, label
def add_special_char(self, dict_character):
dict_character = ['blank'] + dict_character
return dict_character
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import copy
import re
import numpy as np
import cv2
from shapely.geometry import Polygon
import pyclipper
def build_post_process(config, global_config=None):
support_dict = ['DBPostProcess', 'CTCLabelDecode']
config = copy.deepcopy(config)
module_name = config.pop('name')
if module_name == "None":
return
if global_config is not None:
config.update(global_config)
assert module_name in support_dict, Exception(
'post process only support {}'.format(support_dict))
module_class = eval(module_name)(**config)
return module_class
class DBPostProcess(object):
"""
The post process for Differentiable Binarization (DB).
"""
def __init__(self,
thresh=0.3,
box_thresh=0.7,
max_candidates=1000,
unclip_ratio=2.0,
use_dilation=False,
score_mode="fast",
box_type='quad',
**kwargs):
self.thresh = thresh
self.box_thresh = box_thresh
self.max_candidates = max_candidates
self.unclip_ratio = unclip_ratio
self.min_size = 3
self.score_mode = score_mode
self.box_type = box_type
assert score_mode in [
"slow", "fast"
], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
self.dilation_kernel = None if not use_dilation else np.array(
[[1, 1], [1, 1]])
def polygons_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap = _bitmap
height, width = bitmap.shape
boxes = []
scores = []
contours, _ = cv2.findContours((bitmap * 255).astype(np.uint8),
cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours[:self.max_candidates]:
epsilon = 0.002 * cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, epsilon, True)
points = approx.reshape((-1, 2))
if points.shape[0] < 4:
continue
score = self.box_score_fast(pred, points.reshape(-1, 2))
if self.box_thresh > score:
continue
if points.shape[0] > 2:
box = self.unclip(points, self.unclip_ratio)
if len(box) > 1:
continue
else:
continue
box = box.reshape(-1, 2)
_, sside = self.get_mini_boxes(box.reshape((-1, 1, 2)))
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box.tolist())
scores.append(score)
return boxes, scores
def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
'''
_bitmap: single map with shape (1, H, W),
whose values are binarized as {0, 1}
'''
bitmap = _bitmap
height, width = bitmap.shape
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
if len(outs) == 3:
img, contours, _ = outs[0], outs[1], outs[2]
elif len(outs) == 2:
contours, _ = outs[0], outs[1]
num_contours = min(len(contours), self.max_candidates)
boxes = []
scores = []
for index in range(num_contours):
contour = contours[index]
points, sside = self.get_mini_boxes(contour)
if sside < self.min_size:
continue
points = np.array(points)
if self.score_mode == "fast":
score = self.box_score_fast(pred, points.reshape(-1, 2))
else:
score = self.box_score_slow(pred, contour)
if self.box_thresh > score:
continue
box = self.unclip(points, self.unclip_ratio).reshape(-1, 1, 2)
box, sside = self.get_mini_boxes(box)
if sside < self.min_size + 2:
continue
box = np.array(box)
box[:, 0] = np.clip(
np.round(box[:, 0] / width * dest_width), 0, dest_width)
box[:, 1] = np.clip(
np.round(box[:, 1] / height * dest_height), 0, dest_height)
boxes.append(box.astype("int32"))
scores.append(score)
return np.array(boxes, dtype="int32"), scores
def unclip(self, box, unclip_ratio):
poly = Polygon(box)
distance = poly.area * unclip_ratio / poly.length
offset = pyclipper.PyclipperOffset()
offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
expanded = np.array(offset.Execute(distance))
return expanded
def get_mini_boxes(self, contour):
bounding_box = cv2.minAreaRect(contour)
points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
index_1, index_2, index_3, index_4 = 0, 1, 2, 3
if points[1][1] > points[0][1]:
index_1 = 0
index_4 = 1
else:
index_1 = 1
index_4 = 0
if points[3][1] > points[2][1]:
index_2 = 2
index_3 = 3
else:
index_2 = 3
index_3 = 2
box = [
points[index_1], points[index_2], points[index_3], points[index_4]
]
return box, min(bounding_box[1])
def box_score_fast(self, bitmap, _box):
'''
box_score_fast: use bbox mean score as the mean score
'''
h, w = bitmap.shape[:2]
box = _box.copy()
xmin = np.clip(np.floor(box[:, 0].min()).astype("int32"), 0, w - 1)
xmax = np.clip(np.ceil(box[:, 0].max()).astype("int32"), 0, w - 1)
ymin = np.clip(np.floor(box[:, 1].min()).astype("int32"), 0, h - 1)
ymax = np.clip(np.ceil(box[:, 1].max()).astype("int32"), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
box[:, 0] = box[:, 0] - xmin
box[:, 1] = box[:, 1] - ymin
cv2.fillPoly(mask, box.reshape(1, -1, 2).astype("int32"), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def box_score_slow(self, bitmap, contour):
'''
box_score_slow: use polyon mean score as the mean score
'''
h, w = bitmap.shape[:2]
contour = contour.copy()
contour = np.reshape(contour, (-1, 2))
xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
contour[:, 0] = contour[:, 0] - xmin
contour[:, 1] = contour[:, 1] - ymin
cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype("int32"), 1)
return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
def __call__(self, outs_dict, shape_list):
pred = outs_dict['maps']
if not isinstance(pred, np.ndarray):
pred = pred.numpy()
pred = pred[:, 0, :, :]
segmentation = pred > self.thresh
boxes_batch = []
for batch_index in range(pred.shape[0]):
src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
if self.dilation_kernel is not None:
mask = cv2.dilate(
np.array(segmentation[batch_index]).astype(np.uint8),
self.dilation_kernel)
else:
mask = segmentation[batch_index]
if self.box_type == 'poly':
boxes, scores = self.polygons_from_bitmap(pred[batch_index],
mask, src_w, src_h)
elif self.box_type == 'quad':
boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
src_w, src_h)
else:
raise ValueError(
"box_type can only be one of ['quad', 'poly']")
boxes_batch.append({'points': boxes})
return boxes_batch
class BaseRecLabelDecode(object):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False):
self.beg_str = "sos"
self.end_str = "eos"
self.reverse = False
self.character_str = []
if character_dict_path is None:
self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
dict_character = list(self.character_str)
else:
with open(character_dict_path, "rb") as fin:
lines = fin.readlines()
for line in lines:
line = line.decode('utf-8').strip("\n").strip("\r\n")
self.character_str.append(line)
if use_space_char:
self.character_str.append(" ")
dict_character = list(self.character_str)
if 'arabic' in character_dict_path:
self.reverse = True
dict_character = self.add_special_char(dict_character)
self.dict = {}
for i, char in enumerate(dict_character):
self.dict[char] = i
self.character = dict_character
def pred_reverse(self, pred):
pred_re = []
c_current = ''
for c in pred:
if not bool(re.search('[a-zA-Z0-9 :*./%+-]', c)):
if c_current != '':
pred_re.append(c_current)
pred_re.append(c)
c_current = ''
else:
c_current += c
if c_current != '':
pred_re.append(c_current)
return ''.join(pred_re[::-1])
def add_special_char(self, dict_character):
return dict_character
def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
""" convert text-index into text-label. """
result_list = []
ignored_tokens = self.get_ignored_tokens()
batch_size = len(text_index)
for batch_idx in range(batch_size):
selection = np.ones(len(text_index[batch_idx]), dtype=bool)
if is_remove_duplicate:
selection[1:] = text_index[batch_idx][1:] != text_index[
batch_idx][:-1]
for ignored_token in ignored_tokens:
selection &= text_index[batch_idx] != ignored_token
char_list = [
self.character[text_id]
for text_id in text_index[batch_idx][selection]
]
if text_prob is not None:
conf_list = text_prob[batch_idx][selection]
else:
conf_list = [1] * len(selection)
if len(conf_list) == 0:
conf_list = [0]
text = ''.join(char_list)
if self.reverse: # for arabic rec
text = self.pred_reverse(text)
result_list.append((text, np.mean(conf_list).tolist()))
return result_list
def get_ignored_tokens(self):
return [0] # for ctc blank
class CTCLabelDecode(BaseRecLabelDecode):
""" Convert between text-label and text-index """
def __init__(self, character_dict_path=None, use_space_char=False,
**kwargs):
super(CTCLabelDecode, self).__init__(character_dict_path,
use_space_char)
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, tuple) or isinstance(preds, list):
preds = preds[-1]
if not isinstance(preds, np.ndarray):
preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
if label is None:
return text
label = self.decode(label)
return text, label
def add_special_char(self, dict_character):
dict_character = ['blank'] + dict_character
return dict_character

View File

@ -1,452 +1,452 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from copy import deepcopy
import onnxruntime as ort
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from .operators import *
class Recognizer(object):
def __init__(self, label_list, task_name, model_dir=None):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not model_dir:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
model_file_path = os.path.join(model_dir, task_name + ".onnx")
else:
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
if False and ort.get_device() == "GPU":
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])
else:
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
self.input_names = [node.name for node in self.ort_sess.get_inputs()]
self.output_names = [node.name for node in self.ort_sess.get_outputs()]
self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
self.label_list = label_list
@staticmethod
def sort_Y_firstly(arr, threashold):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
and arr[j + 1]["x0"] < arr[j]["x0"]:
tmp = deepcopy(arr[j])
arr[j] = deepcopy(arr[j + 1])
arr[j + 1] = deepcopy(tmp)
return arr
@staticmethod
def sort_X_firstly(arr, threashold, copy=True):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
and arr[j + 1]["top"] < arr[j]["top"]:
tmp = deepcopy(arr[j]) if copy else arr[j]
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
arr[j + 1] = deepcopy(tmp) if copy else tmp
return arr
@staticmethod
def sort_C_firstly(arr, thr=0):
# sort using y1 first and then x1
# sorted(arr, key=lambda r: (r["x0"], r["top"]))
arr = Recognizer.sort_X_firstly(arr, thr)
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if "C" not in arr[j] or "C" not in arr[j + 1]:
continue
if arr[j + 1]["C"] < arr[j]["C"] \
or (
arr[j + 1]["C"] == arr[j]["C"]
and arr[j + 1]["top"] < arr[j]["top"]
):
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
return arr
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
@staticmethod
def sort_R_firstly(arr, thr=0):
# sort using y1 first and then x1
# sorted(arr, key=lambda r: (r["top"], r["x0"]))
arr = Recognizer.sort_Y_firstly(arr, thr)
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
if "R" not in arr[j] or "R" not in arr[j + 1]:
continue
if arr[j + 1]["R"] < arr[j]["R"] \
or (
arr[j + 1]["R"] == arr[j]["R"]
and arr[j + 1]["x0"] < arr[j]["x0"]
):
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
return arr
@staticmethod
def overlapped_area(a, b, ratio=True):
tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
if b["x0"] > x1 or b["x1"] < x0:
return 0
if b["bottom"] < tp or b["top"] > btm:
return 0
x0_ = max(b["x0"], x0)
x1_ = min(b["x1"], x1)
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
tp, btm, x0, x1, b)
tp_ = max(b["top"], tp)
btm_ = min(b["bottom"], btm)
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
tp, btm, x0, x1, b)
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
x0 != 0 and btm - tp != 0 else 0
if ov > 0 and ratio:
ov /= (x1 - x0) * (btm - tp)
return ov
@staticmethod
def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
def notOverlapped(a, b):
return any([a["x1"] < b["x0"],
a["x0"] > b["x1"],
a["bottom"] < b["top"],
a["top"] > b["bottom"]])
i = 0
while i + 1 < len(layouts):
j = i + 1
while j < min(i + far, len(layouts)) \
and (layouts[i].get("type", "") != layouts[j].get("type", "")
or notOverlapped(layouts[i], layouts[j])):
j += 1
if j >= min(i + far, len(layouts)):
i += 1
continue
if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
i += 1
continue
if layouts[i].get("score") and layouts[j].get("score"):
if layouts[i]["score"] > layouts[j]["score"]:
layouts.pop(j)
else:
layouts.pop(i)
continue
area_i, area_i_1 = 0, 0
for b in boxes:
if not notOverlapped(b, layouts[i]):
area_i += Recognizer.overlapped_area(b, layouts[i], False)
if not notOverlapped(b, layouts[j]):
area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
if area_i > area_i_1:
layouts.pop(j)
else:
layouts.pop(i)
return layouts
def create_inputs(self, imgs, im_info):
"""generate input for different model type
Args:
imgs (list(numpy)): list of images (np.ndarray)
im_info (list(dict)): list of image info
Returns:
inputs (dict): input of model
"""
inputs = {}
im_shape = []
scale_factor = []
if len(imgs) == 1:
inputs['image'] = np.array((imgs[0],)).astype('float32')
inputs['im_shape'] = np.array(
(im_info[0]['im_shape'],)).astype('float32')
inputs['scale_factor'] = np.array(
(im_info[0]['scale_factor'],)).astype('float32')
return inputs
for e in im_info:
im_shape.append(np.array((e['im_shape'],)).astype('float32'))
scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
max_shape_h = max([e[0] for e in imgs_shape])
max_shape_w = max([e[1] for e in imgs_shape])
padding_imgs = []
for img in imgs:
im_c, im_h, im_w = img.shape[:]
padding_im = np.zeros(
(im_c, max_shape_h, max_shape_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = img
padding_imgs.append(padding_im)
inputs['image'] = np.stack(padding_imgs, axis=0)
return inputs
@staticmethod
def find_overlapped(box, boxes_sorted_by_y, naive=False):
if not boxes_sorted_by_y:
return
bxs = boxes_sorted_by_y
s, e, ii = 0, len(bxs), 0
while s < e and not naive:
ii = (e + s) // 2
pv = bxs[ii]
if box["bottom"] < pv["top"]:
e = ii
continue
if box["top"] > pv["bottom"]:
s = ii + 1
continue
break
while s < ii:
if box["top"] > bxs[s]["bottom"]:
s += 1
break
while e - 1 > ii:
if box["bottom"] < bxs[e - 1]["top"]:
e -= 1
break
max_overlaped_i, max_overlaped = None, 0
for i in range(s, e):
ov = Recognizer.overlapped_area(bxs[i], box)
if ov <= max_overlaped:
continue
max_overlaped_i = i
max_overlaped = ov
return max_overlaped_i
@staticmethod
def find_horizontally_tightest_fit(box, boxes):
if not boxes:
return
min_dis, min_i = 1000000, None
for i,b in enumerate(boxes):
if box.get("layoutno", "0") != b.get("layoutno", "0"): continue
dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
if dis < min_dis:
min_i = i
min_dis = dis
return min_i
@staticmethod
def find_overlapped_with_threashold(box, boxes, thr=0.3):
if not boxes:
return
max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
s, e = 0, len(boxes)
for i in range(s, e):
ov = Recognizer.overlapped_area(box, boxes[i])
_ov = Recognizer.overlapped_area(boxes[i], box)
if (ov, _ov) < (max_overlapped, _max_overlapped):
continue
max_overlapped_i = i
max_overlapped = ov
_max_overlapped = _ov
return max_overlapped_i
def preprocess(self, image_list):
inputs = []
if "scale_factor" in self.input_names:
preprocess_ops = []
for op_info in [
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
{'type': 'Permute'},
{'stride': 32, 'type': 'PadStride'}
]:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
for im_path in image_list:
im, im_info = preprocess(im_path, preprocess_ops)
inputs.append({"image": np.array((im,)).astype('float32'),
"scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
else:
hh, ww = self.input_shape
for img in image_list:
h, w = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
# Scale input pixel values to 0 to 1
img /= 255.0
img = img.transpose(2, 0, 1)
img = img[np.newaxis, :, :, :].astype(np.float32)
inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
return inputs
def postprocess(self, boxes, inputs, thr):
if "scale_factor" in self.input_names:
bb = []
for b in boxes:
clsid, bbox, score = int(b[0]), b[2:], b[1]
if score < thr:
continue
if clsid >= len(self.label_list):
continue
bb.append({
"type": self.label_list[clsid].lower(),
"bbox": [float(t) for t in bbox.tolist()],
"score": float(score)
})
return bb
def xywh2xyxy(x):
# [x, y, w, h] to [x1, y1, x2, y2]
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2
y[:, 1] = x[:, 1] - x[:, 3] / 2
y[:, 2] = x[:, 0] + x[:, 2] / 2
y[:, 3] = x[:, 1] + x[:, 3] / 2
return y
def compute_iou(box, boxes):
# Compute xmin, ymin, xmax, ymax for both boxes
xmin = np.maximum(box[0], boxes[:, 0])
ymin = np.maximum(box[1], boxes[:, 1])
xmax = np.minimum(box[2], boxes[:, 2])
ymax = np.minimum(box[3], boxes[:, 3])
# Compute intersection area
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
# Compute union area
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union_area = box_area + boxes_area - intersection_area
# Compute IoU
iou = intersection_area / union_area
return iou
def iou_filter(boxes, scores, iou_threshold):
sorted_indices = np.argsort(scores)[::-1]
keep_boxes = []
while sorted_indices.size > 0:
# Pick the last box
box_id = sorted_indices[0]
keep_boxes.append(box_id)
# Compute IoU of the picked box with the rest
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
# Remove boxes with IoU over the threshold
keep_indices = np.where(ious < iou_threshold)[0]
# print(keep_indices.shape, sorted_indices.shape)
sorted_indices = sorted_indices[keep_indices + 1]
return keep_boxes
boxes = np.squeeze(boxes).T
# Filter out object confidence scores below threshold
scores = np.max(boxes[:, 4:], axis=1)
boxes = boxes[scores > thr, :]
scores = scores[scores > thr]
if len(boxes) == 0: return []
# Get the class with the highest confidence
class_ids = np.argmax(boxes[:, 4:], axis=1)
boxes = boxes[:, :4]
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
boxes = xywh2xyxy(boxes)
unique_class_ids = np.unique(class_ids)
indices = []
for class_id in unique_class_ids:
class_indices = np.where(class_ids == class_id)[0]
class_boxes = boxes[class_indices, :]
class_scores = scores[class_indices]
class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
indices.extend(class_indices[class_keep_boxes])
return [{
"type": self.label_list[class_ids[i]].lower(),
"bbox": [float(t) for t in boxes[i].tolist()],
"score": float(scores[i])
} for i in indices]
def __call__(self, image_list, thr=0.7, batch_size=16):
res = []
imgs = []
for i in range(len(image_list)):
if not isinstance(image_list[i], np.ndarray):
imgs.append(np.array(image_list[i]))
else: imgs.append(image_list[i])
batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
for i in range(batch_loop_cnt):
start_index = i * batch_size
end_index = min((i + 1) * batch_size, len(imgs))
batch_image_list = imgs[start_index:end_index]
inputs = self.preprocess(batch_image_list)
print("preprocess")
for ins in inputs:
bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
res.append(bb)
#seeit.save_results(image_list, res, self.label_list, threshold=thr)
return res
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
from copy import deepcopy
import onnxruntime as ort
from huggingface_hub import snapshot_download
from api.utils.file_utils import get_project_base_directory
from .operators import *
class Recognizer(object):
def __init__(self, label_list, task_name, model_dir=None):
"""
If you have trouble downloading HuggingFace models, -_^ this might help!!
For Linux:
export HF_ENDPOINT=https://hf-mirror.com
For Windows:
Good luck
^_-
"""
if not model_dir:
model_dir = os.path.join(
get_project_base_directory(),
"rag/res/deepdoc")
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
local_dir_use_symlinks=False)
model_file_path = os.path.join(model_dir, task_name + ".onnx")
else:
model_file_path = os.path.join(model_dir, task_name + ".onnx")
if not os.path.exists(model_file_path):
raise ValueError("not find model file path {}".format(
model_file_path))
if False and ort.get_device() == "GPU":
options = ort.SessionOptions()
options.enable_cpu_mem_arena = False
self.ort_sess = ort.InferenceSession(model_file_path, options=options, providers=[('CUDAExecutionProvider')])
else:
self.ort_sess = ort.InferenceSession(model_file_path, providers=['CPUExecutionProvider'])
self.input_names = [node.name for node in self.ort_sess.get_inputs()]
self.output_names = [node.name for node in self.ort_sess.get_outputs()]
self.input_shape = self.ort_sess.get_inputs()[0].shape[2:4]
self.label_list = label_list
@staticmethod
def sort_Y_firstly(arr, threashold):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["top"], r["x0"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["top"] - arr[j]["top"]) < threashold \
and arr[j + 1]["x0"] < arr[j]["x0"]:
tmp = deepcopy(arr[j])
arr[j] = deepcopy(arr[j + 1])
arr[j + 1] = deepcopy(tmp)
return arr
@staticmethod
def sort_X_firstly(arr, threashold, copy=True):
# sort using y1 first and then x1
arr = sorted(arr, key=lambda r: (r["x0"], r["top"]))
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if abs(arr[j + 1]["x0"] - arr[j]["x0"]) < threashold \
and arr[j + 1]["top"] < arr[j]["top"]:
tmp = deepcopy(arr[j]) if copy else arr[j]
arr[j] = deepcopy(arr[j + 1]) if copy else arr[j + 1]
arr[j + 1] = deepcopy(tmp) if copy else tmp
return arr
@staticmethod
def sort_C_firstly(arr, thr=0):
# sort using y1 first and then x1
# sorted(arr, key=lambda r: (r["x0"], r["top"]))
arr = Recognizer.sort_X_firstly(arr, thr)
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
# restore the order using th
if "C" not in arr[j] or "C" not in arr[j + 1]:
continue
if arr[j + 1]["C"] < arr[j]["C"] \
or (
arr[j + 1]["C"] == arr[j]["C"]
and arr[j + 1]["top"] < arr[j]["top"]
):
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
return arr
return sorted(arr, key=lambda r: (r.get("C", r["x0"]), r["top"]))
@staticmethod
def sort_R_firstly(arr, thr=0):
# sort using y1 first and then x1
# sorted(arr, key=lambda r: (r["top"], r["x0"]))
arr = Recognizer.sort_Y_firstly(arr, thr)
for i in range(len(arr) - 1):
for j in range(i, -1, -1):
if "R" not in arr[j] or "R" not in arr[j + 1]:
continue
if arr[j + 1]["R"] < arr[j]["R"] \
or (
arr[j + 1]["R"] == arr[j]["R"]
and arr[j + 1]["x0"] < arr[j]["x0"]
):
tmp = arr[j]
arr[j] = arr[j + 1]
arr[j + 1] = tmp
return arr
@staticmethod
def overlapped_area(a, b, ratio=True):
tp, btm, x0, x1 = a["top"], a["bottom"], a["x0"], a["x1"]
if b["x0"] > x1 or b["x1"] < x0:
return 0
if b["bottom"] < tp or b["top"] > btm:
return 0
x0_ = max(b["x0"], x0)
x1_ = min(b["x1"], x1)
assert x0_ <= x1_, "Fuckedup! T:{},B:{},X0:{},X1:{} ==> {}".format(
tp, btm, x0, x1, b)
tp_ = max(b["top"], tp)
btm_ = min(b["bottom"], btm)
assert tp_ <= btm_, "Fuckedup! T:{},B:{},X0:{},X1:{} => {}".format(
tp, btm, x0, x1, b)
ov = (btm_ - tp_) * (x1_ - x0_) if x1 - \
x0 != 0 and btm - tp != 0 else 0
if ov > 0 and ratio:
ov /= (x1 - x0) * (btm - tp)
return ov
@staticmethod
def layouts_cleanup(boxes, layouts, far=2, thr=0.7):
def notOverlapped(a, b):
return any([a["x1"] < b["x0"],
a["x0"] > b["x1"],
a["bottom"] < b["top"],
a["top"] > b["bottom"]])
i = 0
while i + 1 < len(layouts):
j = i + 1
while j < min(i + far, len(layouts)) \
and (layouts[i].get("type", "") != layouts[j].get("type", "")
or notOverlapped(layouts[i], layouts[j])):
j += 1
if j >= min(i + far, len(layouts)):
i += 1
continue
if Recognizer.overlapped_area(layouts[i], layouts[j]) < thr \
and Recognizer.overlapped_area(layouts[j], layouts[i]) < thr:
i += 1
continue
if layouts[i].get("score") and layouts[j].get("score"):
if layouts[i]["score"] > layouts[j]["score"]:
layouts.pop(j)
else:
layouts.pop(i)
continue
area_i, area_i_1 = 0, 0
for b in boxes:
if not notOverlapped(b, layouts[i]):
area_i += Recognizer.overlapped_area(b, layouts[i], False)
if not notOverlapped(b, layouts[j]):
area_i_1 += Recognizer.overlapped_area(b, layouts[j], False)
if area_i > area_i_1:
layouts.pop(j)
else:
layouts.pop(i)
return layouts
def create_inputs(self, imgs, im_info):
"""generate input for different model type
Args:
imgs (list(numpy)): list of images (np.ndarray)
im_info (list(dict)): list of image info
Returns:
inputs (dict): input of model
"""
inputs = {}
im_shape = []
scale_factor = []
if len(imgs) == 1:
inputs['image'] = np.array((imgs[0],)).astype('float32')
inputs['im_shape'] = np.array(
(im_info[0]['im_shape'],)).astype('float32')
inputs['scale_factor'] = np.array(
(im_info[0]['scale_factor'],)).astype('float32')
return inputs
for e in im_info:
im_shape.append(np.array((e['im_shape'],)).astype('float32'))
scale_factor.append(np.array((e['scale_factor'],)).astype('float32'))
inputs['im_shape'] = np.concatenate(im_shape, axis=0)
inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
max_shape_h = max([e[0] for e in imgs_shape])
max_shape_w = max([e[1] for e in imgs_shape])
padding_imgs = []
for img in imgs:
im_c, im_h, im_w = img.shape[:]
padding_im = np.zeros(
(im_c, max_shape_h, max_shape_w), dtype=np.float32)
padding_im[:, :im_h, :im_w] = img
padding_imgs.append(padding_im)
inputs['image'] = np.stack(padding_imgs, axis=0)
return inputs
@staticmethod
def find_overlapped(box, boxes_sorted_by_y, naive=False):
if not boxes_sorted_by_y:
return
bxs = boxes_sorted_by_y
s, e, ii = 0, len(bxs), 0
while s < e and not naive:
ii = (e + s) // 2
pv = bxs[ii]
if box["bottom"] < pv["top"]:
e = ii
continue
if box["top"] > pv["bottom"]:
s = ii + 1
continue
break
while s < ii:
if box["top"] > bxs[s]["bottom"]:
s += 1
break
while e - 1 > ii:
if box["bottom"] < bxs[e - 1]["top"]:
e -= 1
break
max_overlaped_i, max_overlaped = None, 0
for i in range(s, e):
ov = Recognizer.overlapped_area(bxs[i], box)
if ov <= max_overlaped:
continue
max_overlaped_i = i
max_overlaped = ov
return max_overlaped_i
@staticmethod
def find_horizontally_tightest_fit(box, boxes):
if not boxes:
return
min_dis, min_i = 1000000, None
for i,b in enumerate(boxes):
if box.get("layoutno", "0") != b.get("layoutno", "0"): continue
dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
if dis < min_dis:
min_i = i
min_dis = dis
return min_i
@staticmethod
def find_overlapped_with_threashold(box, boxes, thr=0.3):
if not boxes:
return
max_overlapped_i, max_overlapped, _max_overlapped = None, thr, 0
s, e = 0, len(boxes)
for i in range(s, e):
ov = Recognizer.overlapped_area(box, boxes[i])
_ov = Recognizer.overlapped_area(boxes[i], box)
if (ov, _ov) < (max_overlapped, _max_overlapped):
continue
max_overlapped_i = i
max_overlapped = ov
_max_overlapped = _ov
return max_overlapped_i
def preprocess(self, image_list):
inputs = []
if "scale_factor" in self.input_names:
preprocess_ops = []
for op_info in [
{'interp': 2, 'keep_ratio': False, 'target_size': [800, 608], 'type': 'LinearResize'},
{'is_scale': True, 'mean': [0.485, 0.456, 0.406], 'std': [0.229, 0.224, 0.225], 'type': 'StandardizeImage'},
{'type': 'Permute'},
{'stride': 32, 'type': 'PadStride'}
]:
new_op_info = op_info.copy()
op_type = new_op_info.pop('type')
preprocess_ops.append(eval(op_type)(**new_op_info))
for im_path in image_list:
im, im_info = preprocess(im_path, preprocess_ops)
inputs.append({"image": np.array((im,)).astype('float32'),
"scale_factor": np.array((im_info["scale_factor"],)).astype('float32')})
else:
hh, ww = self.input_shape
for img in image_list:
h, w = img.shape[:2]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(np.array(img).astype('float32'), (ww, hh))
# Scale input pixel values to 0 to 1
img /= 255.0
img = img.transpose(2, 0, 1)
img = img[np.newaxis, :, :, :].astype(np.float32)
inputs.append({self.input_names[0]: img, "scale_factor": [w/ww, h/hh]})
return inputs
def postprocess(self, boxes, inputs, thr):
if "scale_factor" in self.input_names:
bb = []
for b in boxes:
clsid, bbox, score = int(b[0]), b[2:], b[1]
if score < thr:
continue
if clsid >= len(self.label_list):
continue
bb.append({
"type": self.label_list[clsid].lower(),
"bbox": [float(t) for t in bbox.tolist()],
"score": float(score)
})
return bb
def xywh2xyxy(x):
# [x, y, w, h] to [x1, y1, x2, y2]
y = np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2
y[:, 1] = x[:, 1] - x[:, 3] / 2
y[:, 2] = x[:, 0] + x[:, 2] / 2
y[:, 3] = x[:, 1] + x[:, 3] / 2
return y
def compute_iou(box, boxes):
# Compute xmin, ymin, xmax, ymax for both boxes
xmin = np.maximum(box[0], boxes[:, 0])
ymin = np.maximum(box[1], boxes[:, 1])
xmax = np.minimum(box[2], boxes[:, 2])
ymax = np.minimum(box[3], boxes[:, 3])
# Compute intersection area
intersection_area = np.maximum(0, xmax - xmin) * np.maximum(0, ymax - ymin)
# Compute union area
box_area = (box[2] - box[0]) * (box[3] - box[1])
boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
union_area = box_area + boxes_area - intersection_area
# Compute IoU
iou = intersection_area / union_area
return iou
def iou_filter(boxes, scores, iou_threshold):
sorted_indices = np.argsort(scores)[::-1]
keep_boxes = []
while sorted_indices.size > 0:
# Pick the last box
box_id = sorted_indices[0]
keep_boxes.append(box_id)
# Compute IoU of the picked box with the rest
ious = compute_iou(boxes[box_id, :], boxes[sorted_indices[1:], :])
# Remove boxes with IoU over the threshold
keep_indices = np.where(ious < iou_threshold)[0]
# print(keep_indices.shape, sorted_indices.shape)
sorted_indices = sorted_indices[keep_indices + 1]
return keep_boxes
boxes = np.squeeze(boxes).T
# Filter out object confidence scores below threshold
scores = np.max(boxes[:, 4:], axis=1)
boxes = boxes[scores > thr, :]
scores = scores[scores > thr]
if len(boxes) == 0: return []
# Get the class with the highest confidence
class_ids = np.argmax(boxes[:, 4:], axis=1)
boxes = boxes[:, :4]
input_shape = np.array([inputs["scale_factor"][0], inputs["scale_factor"][1], inputs["scale_factor"][0], inputs["scale_factor"][1]])
boxes = np.multiply(boxes, input_shape, dtype=np.float32)
boxes = xywh2xyxy(boxes)
unique_class_ids = np.unique(class_ids)
indices = []
for class_id in unique_class_ids:
class_indices = np.where(class_ids == class_id)[0]
class_boxes = boxes[class_indices, :]
class_scores = scores[class_indices]
class_keep_boxes = iou_filter(class_boxes, class_scores, 0.2)
indices.extend(class_indices[class_keep_boxes])
return [{
"type": self.label_list[class_ids[i]].lower(),
"bbox": [float(t) for t in boxes[i].tolist()],
"score": float(scores[i])
} for i in indices]
def __call__(self, image_list, thr=0.7, batch_size=16):
res = []
imgs = []
for i in range(len(image_list)):
if not isinstance(image_list[i], np.ndarray):
imgs.append(np.array(image_list[i]))
else: imgs.append(image_list[i])
batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
for i in range(batch_loop_cnt):
start_index = i * batch_size
end_index = min((i + 1) * batch_size, len(imgs))
batch_image_list = imgs[start_index:end_index]
inputs = self.preprocess(batch_image_list)
print("preprocess")
for ins in inputs:
bb = self.postprocess(self.ort_sess.run(None, {k:v for k,v in ins.items() if k in self.input_names})[0], ins, thr)
res.append(bb)
#seeit.save_results(image_list, res, self.label_list, threshold=thr)
return res

View File

@ -1,83 +1,83 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import PIL
from PIL import ImageDraw
def save_results(image_list, results, labels, output_dir='output/', threshold=0.5):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for idx, im in enumerate(image_list):
im = draw_box(im, results[idx], labels, threshold=threshold)
out_path = os.path.join(output_dir, f"{idx}.jpg")
im.save(out_path, quality=95)
print("save result to: " + out_path)
def draw_box(im, result, lables, threshold=0.5):
draw_thickness = min(im.size) // 320
draw = ImageDraw.Draw(im)
color_list = get_color_map_list(len(lables))
clsid2color = {n.lower():color_list[i] for i,n in enumerate(lables)}
result = [r for r in result if r["score"] >= threshold]
for dt in result:
color = tuple(clsid2color[dt["type"]])
xmin, ymin, xmax, ymax = dt["bbox"]
draw.line(
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
(xmin, ymin)],
width=draw_thickness,
fill=color)
# draw label
text = "{} {:.4f}".format(dt["type"], dt["score"])
tw, th = imagedraw_textsize_c(draw, text)
draw.rectangle(
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
return im
def get_color_map_list(num_classes):
"""
Args:
num_classes (int): number of class
Returns:
color_map (list): RGB color list
"""
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
return color_map
def imagedraw_textsize_c(draw, text):
if int(PIL.__version__.split('.')[0]) < 10:
tw, th = draw.textsize(text)
else:
left, top, right, bottom = draw.textbbox((0, 0), text)
tw, th = right - left, bottom - top
return tw, th
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import PIL
from PIL import ImageDraw
def save_results(image_list, results, labels, output_dir='output/', threshold=0.5):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for idx, im in enumerate(image_list):
im = draw_box(im, results[idx], labels, threshold=threshold)
out_path = os.path.join(output_dir, f"{idx}.jpg")
im.save(out_path, quality=95)
print("save result to: " + out_path)
def draw_box(im, result, lables, threshold=0.5):
draw_thickness = min(im.size) // 320
draw = ImageDraw.Draw(im)
color_list = get_color_map_list(len(lables))
clsid2color = {n.lower():color_list[i] for i,n in enumerate(lables)}
result = [r for r in result if r["score"] >= threshold]
for dt in result:
color = tuple(clsid2color[dt["type"]])
xmin, ymin, xmax, ymax = dt["bbox"]
draw.line(
[(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin),
(xmin, ymin)],
width=draw_thickness,
fill=color)
# draw label
text = "{} {:.4f}".format(dt["type"], dt["score"])
tw, th = imagedraw_textsize_c(draw, text)
draw.rectangle(
[(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color)
draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255))
return im
def get_color_map_list(num_classes):
"""
Args:
num_classes (int): number of class
Returns:
color_map (list): RGB color list
"""
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
return color_map
def imagedraw_textsize_c(draw, text):
if int(PIL.__version__.split('.')[0]) < 10:
tw, th = draw.textsize(text)
else:
left, top, right, bottom = draw.textbbox((0, 0), text)
tw, th = right - left, bottom - top
return tw, th

View File

@ -1,56 +1,56 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
sys.path.insert(
0,
os.path.abspath(
os.path.join(
os.path.dirname(
os.path.abspath(__file__)),
'../../')))
from deepdoc.vision.seeit import draw_box
from deepdoc.vision import OCR, init_in_out
import argparse
import numpy as np
def main(args):
ocr = OCR()
images, outputs = init_in_out(args)
for i, img in enumerate(images):
bxs = ocr(np.array(img))
bxs = [(line[0], line[1][0]) for line in bxs]
bxs = [{
"text": t,
"bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]],
"type": "ocr",
"score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
img = draw_box(images[i], bxs, ["ocr"], 1.)
img.save(outputs[i], quality=95)
with open(outputs[i] + ".txt", "w+") as f:
f.write("\n".join([o["text"] for o in bxs]))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--inputs',
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
required=True)
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'",
default="./ocr_outputs")
args = parser.parse_args()
main(args)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import sys
sys.path.insert(
0,
os.path.abspath(
os.path.join(
os.path.dirname(
os.path.abspath(__file__)),
'../../')))
from deepdoc.vision.seeit import draw_box
from deepdoc.vision import OCR, init_in_out
import argparse
import numpy as np
def main(args):
ocr = OCR()
images, outputs = init_in_out(args)
for i, img in enumerate(images):
bxs = ocr(np.array(img))
bxs = [(line[0], line[1][0]) for line in bxs]
bxs = [{
"text": t,
"bbox": [b[0][0], b[0][1], b[1][0], b[-1][1]],
"type": "ocr",
"score": 1} for b, t in bxs if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]]
img = draw_box(images[i], bxs, ["ocr"], 1.)
img.save(outputs[i], quality=95)
with open(outputs[i] + ".txt", "w+") as f:
f.write("\n".join([o["text"] for o in bxs]))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--inputs',
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
required=True)
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './ocr_outputs'",
default="./ocr_outputs")
args = parser.parse_args()
main(args)

View File

@ -1,187 +1,187 @@
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, sys
sys.path.insert(
0,
os.path.abspath(
os.path.join(
os.path.dirname(
os.path.abspath(__file__)),
'../../')))
from deepdoc.vision.seeit import draw_box
from deepdoc.vision import Recognizer, LayoutRecognizer, TableStructureRecognizer, OCR, init_in_out
from api.utils.file_utils import get_project_base_directory
import argparse
import re
import numpy as np
def main(args):
images, outputs = init_in_out(args)
if args.mode.lower() == "layout":
labels = LayoutRecognizer.labels
detr = Recognizer(
labels,
"layout",
os.path.join(
get_project_base_directory(),
"rag/res/deepdoc/"))
if args.mode.lower() == "tsr":
labels = TableStructureRecognizer.labels
detr = TableStructureRecognizer()
ocr = OCR()
layouts = detr(images, float(args.threshold))
for i, lyt in enumerate(layouts):
if args.mode.lower() == "tsr":
#lyt = [t for t in lyt if t["type"] == "table column"]
html = get_table_html(images[i], lyt, ocr)
with open(outputs[i] + ".html", "w+") as f:
f.write(html)
lyt = [{
"type": t["label"],
"bbox": [t["x0"], t["top"], t["x1"], t["bottom"]],
"score": t["score"]
} for t in lyt]
img = draw_box(images[i], lyt, labels, float(args.threshold))
img.save(outputs[i], quality=95)
print("save result to: " + outputs[i])
def get_table_html(img, tb_cpns, ocr):
boxes = ocr(np.array(img))
boxes = Recognizer.sort_Y_firstly(
[{"x0": b[0][0], "x1": b[1][0],
"top": b[0][1], "text": t[0],
"bottom": b[-1][1],
"layout_type": "table",
"page_number": 0} for b, t in boxes if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
np.mean([b[-1][1] - b[0][1] for b, _ in boxes]) / 3
)
def gather(kwd, fzy=10, ption=0.6):
nonlocal boxes
eles = Recognizer.sort_Y_firstly(
[r for r in tb_cpns if re.match(kwd, r["label"])], fzy)
eles = Recognizer.layouts_cleanup(boxes, eles, 5, ption)
return Recognizer.sort_Y_firstly(eles, 0)
headers = gather(r".*header$")
rows = gather(r".* (row|header)")
spans = gather(r".*spanning")
clmns = sorted([r for r in tb_cpns if re.match(
r"table column$", r["label"])], key=lambda x: x["x0"])
clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)
for b in boxes:
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
if ii is not None:
b["R"] = ii
b["R_top"] = rows[ii]["top"]
b["R_bott"] = rows[ii]["bottom"]
ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
if ii is not None:
b["H_top"] = headers[ii]["top"]
b["H_bott"] = headers[ii]["bottom"]
b["H_left"] = headers[ii]["x0"]
b["H_right"] = headers[ii]["x1"]
b["H"] = ii
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
if ii is not None:
b["C"] = ii
b["C_left"] = clmns[ii]["x0"]
b["C_right"] = clmns[ii]["x1"]
ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
if ii is not None:
b["H_top"] = spans[ii]["top"]
b["H_bott"] = spans[ii]["bottom"]
b["H_left"] = spans[ii]["x0"]
b["H_right"] = spans[ii]["x1"]
b["SP"] = ii
html = """
<html>
<head>
<style>
._table_1nkzy_11 {
margin: auto;
width: 70%%;
padding: 10px;
}
._table_1nkzy_11 p {
margin-bottom: 50px;
border: 1px solid #e1e1e1;
}
caption {
color: #6ac1ca;
font-size: 20px;
height: 50px;
line-height: 50px;
font-weight: 600;
margin-bottom: 10px;
}
._table_1nkzy_11 table {
width: 100%%;
border-collapse: collapse;
}
th {
color: #fff;
background-color: #6ac1ca;
}
td:hover {
background: #c1e8e8;
}
tr:nth-child(even) {
background-color: #f2f2f2;
}
._table_1nkzy_11 th,
._table_1nkzy_11 td {
text-align: center;
border: 1px solid #ddd;
padding: 8px;
}
</style>
</head>
<body>
%s
</body>
</html>
""" % TableStructureRecognizer.construct_table(boxes, html=True)
return html
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--inputs',
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
required=True)
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './layouts_outputs'",
default="./layouts_outputs")
parser.add_argument(
'--threshold',
help="A threshold to filter out detections. Default: 0.5",
default=0.5)
parser.add_argument('--mode', help="Task mode: layout recognition or table structure recognition", choices=["layout", "tsr"],
default="layout")
args = parser.parse_args()
main(args)
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os, sys
sys.path.insert(
0,
os.path.abspath(
os.path.join(
os.path.dirname(
os.path.abspath(__file__)),
'../../')))
from deepdoc.vision.seeit import draw_box
from deepdoc.vision import Recognizer, LayoutRecognizer, TableStructureRecognizer, OCR, init_in_out
from api.utils.file_utils import get_project_base_directory
import argparse
import re
import numpy as np
def main(args):
images, outputs = init_in_out(args)
if args.mode.lower() == "layout":
labels = LayoutRecognizer.labels
detr = Recognizer(
labels,
"layout",
os.path.join(
get_project_base_directory(),
"rag/res/deepdoc/"))
if args.mode.lower() == "tsr":
labels = TableStructureRecognizer.labels
detr = TableStructureRecognizer()
ocr = OCR()
layouts = detr(images, float(args.threshold))
for i, lyt in enumerate(layouts):
if args.mode.lower() == "tsr":
#lyt = [t for t in lyt if t["type"] == "table column"]
html = get_table_html(images[i], lyt, ocr)
with open(outputs[i] + ".html", "w+") as f:
f.write(html)
lyt = [{
"type": t["label"],
"bbox": [t["x0"], t["top"], t["x1"], t["bottom"]],
"score": t["score"]
} for t in lyt]
img = draw_box(images[i], lyt, labels, float(args.threshold))
img.save(outputs[i], quality=95)
print("save result to: " + outputs[i])
def get_table_html(img, tb_cpns, ocr):
boxes = ocr(np.array(img))
boxes = Recognizer.sort_Y_firstly(
[{"x0": b[0][0], "x1": b[1][0],
"top": b[0][1], "text": t[0],
"bottom": b[-1][1],
"layout_type": "table",
"page_number": 0} for b, t in boxes if b[0][0] <= b[1][0] and b[0][1] <= b[-1][1]],
np.mean([b[-1][1] - b[0][1] for b, _ in boxes]) / 3
)
def gather(kwd, fzy=10, ption=0.6):
nonlocal boxes
eles = Recognizer.sort_Y_firstly(
[r for r in tb_cpns if re.match(kwd, r["label"])], fzy)
eles = Recognizer.layouts_cleanup(boxes, eles, 5, ption)
return Recognizer.sort_Y_firstly(eles, 0)
headers = gather(r".*header$")
rows = gather(r".* (row|header)")
spans = gather(r".*spanning")
clmns = sorted([r for r in tb_cpns if re.match(
r"table column$", r["label"])], key=lambda x: x["x0"])
clmns = Recognizer.layouts_cleanup(boxes, clmns, 5, 0.5)
for b in boxes:
ii = Recognizer.find_overlapped_with_threashold(b, rows, thr=0.3)
if ii is not None:
b["R"] = ii
b["R_top"] = rows[ii]["top"]
b["R_bott"] = rows[ii]["bottom"]
ii = Recognizer.find_overlapped_with_threashold(b, headers, thr=0.3)
if ii is not None:
b["H_top"] = headers[ii]["top"]
b["H_bott"] = headers[ii]["bottom"]
b["H_left"] = headers[ii]["x0"]
b["H_right"] = headers[ii]["x1"]
b["H"] = ii
ii = Recognizer.find_horizontally_tightest_fit(b, clmns)
if ii is not None:
b["C"] = ii
b["C_left"] = clmns[ii]["x0"]
b["C_right"] = clmns[ii]["x1"]
ii = Recognizer.find_overlapped_with_threashold(b, spans, thr=0.3)
if ii is not None:
b["H_top"] = spans[ii]["top"]
b["H_bott"] = spans[ii]["bottom"]
b["H_left"] = spans[ii]["x0"]
b["H_right"] = spans[ii]["x1"]
b["SP"] = ii
html = """
<html>
<head>
<style>
._table_1nkzy_11 {
margin: auto;
width: 70%%;
padding: 10px;
}
._table_1nkzy_11 p {
margin-bottom: 50px;
border: 1px solid #e1e1e1;
}
caption {
color: #6ac1ca;
font-size: 20px;
height: 50px;
line-height: 50px;
font-weight: 600;
margin-bottom: 10px;
}
._table_1nkzy_11 table {
width: 100%%;
border-collapse: collapse;
}
th {
color: #fff;
background-color: #6ac1ca;
}
td:hover {
background: #c1e8e8;
}
tr:nth-child(even) {
background-color: #f2f2f2;
}
._table_1nkzy_11 th,
._table_1nkzy_11 td {
text-align: center;
border: 1px solid #ddd;
padding: 8px;
}
</style>
</head>
<body>
%s
</body>
</html>
""" % TableStructureRecognizer.construct_table(boxes, html=True)
return html
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--inputs',
help="Directory where to store images or PDFs, or a file path to a single image or PDF",
required=True)
parser.add_argument('--output_dir', help="Directory where to store the output images. Default: './layouts_outputs'",
default="./layouts_outputs")
parser.add_argument(
'--threshold',
help="A threshold to filter out detections. Default: 0.5",
default=0.5)
parser.add_argument('--mode', help="Task mode: layout recognition or table structure recognition", choices=["layout", "tsr"],
default="layout")
args = parser.parse_args()
main(args)

File diff suppressed because it is too large Load Diff