mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Format file format from Windows/dos to Unix (#1949)
### What problem does this PR solve? Related source file is in Windows/DOS format, they are format to Unix format. ### Type of change - [x] Refactoring Signed-off-by: Jin Hai <haijin.chn@gmail.com>
This commit is contained in:
@ -1,184 +1,184 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import uuid
|
||||
from copy import deepcopy
|
||||
|
||||
from api.db import LLMType, UserTenantRole
|
||||
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
|
||||
from api.db.services import UserService
|
||||
from api.db.services.canvas_service import CanvasTemplateService
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
|
||||
from api.db.services.user_service import TenantService, UserTenantService
|
||||
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
|
||||
def init_superuser():
|
||||
user_info = {
|
||||
"id": uuid.uuid1().hex,
|
||||
"password": "admin",
|
||||
"nickname": "admin",
|
||||
"is_superuser": True,
|
||||
"email": "admin@ragflow.io",
|
||||
"creator": "system",
|
||||
"status": "1",
|
||||
}
|
||||
tenant = {
|
||||
"id": user_info["id"],
|
||||
"name": user_info["nickname"] + "‘s Kingdom",
|
||||
"llm_id": CHAT_MDL,
|
||||
"embd_id": EMBEDDING_MDL,
|
||||
"asr_id": ASR_MDL,
|
||||
"parser_ids": PARSERS,
|
||||
"img2txt_id": IMAGE2TEXT_MDL
|
||||
}
|
||||
usr_tenant = {
|
||||
"tenant_id": user_info["id"],
|
||||
"user_id": user_info["id"],
|
||||
"invited_by": user_info["id"],
|
||||
"role": UserTenantRole.OWNER
|
||||
}
|
||||
tenant_llm = []
|
||||
for llm in LLMService.query(fid=LLM_FACTORY):
|
||||
tenant_llm.append(
|
||||
{"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
|
||||
"api_key": API_KEY, "api_base": LLM_BASE_URL})
|
||||
|
||||
if not UserService.save(**user_info):
|
||||
print("\033[93m【ERROR】\033[0mcan't init admin.")
|
||||
return
|
||||
TenantService.insert(**tenant)
|
||||
UserTenantService.insert(**usr_tenant)
|
||||
TenantLLMService.insert_many(tenant_llm)
|
||||
print(
|
||||
"【INFO】Super user initialized. \033[93memail: admin@ragflow.io, password: admin\033[0m. Changing the password after logining is strongly recomanded.")
|
||||
|
||||
chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
|
||||
msg = chat_mdl.chat(system="", history=[
|
||||
{"role": "user", "content": "Hello!"}], gen_conf={})
|
||||
if msg.find("ERROR: ") == 0:
|
||||
print(
|
||||
"\33[91m【ERROR】\33[0m: ",
|
||||
"'{}' dosen't work. {}".format(
|
||||
tenant["llm_id"],
|
||||
msg))
|
||||
embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
|
||||
v, c = embd_mdl.encode(["Hello!"])
|
||||
if c == 0:
|
||||
print(
|
||||
"\33[91m【ERROR】\33[0m:",
|
||||
" '{}' dosen't work!".format(
|
||||
tenant["embd_id"]))
|
||||
|
||||
|
||||
def init_llm_factory():
|
||||
try:
|
||||
LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
factory_llm_infos = json.load(
|
||||
open(
|
||||
os.path.join(get_project_base_directory(), "conf", "llm_factories.json"),
|
||||
"r",
|
||||
)
|
||||
)
|
||||
for factory_llm_info in factory_llm_infos["factory_llm_infos"]:
|
||||
llm_infos = factory_llm_info.pop("llm")
|
||||
try:
|
||||
LLMFactoriesService.save(**factory_llm_info)
|
||||
except Exception as e:
|
||||
pass
|
||||
LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
|
||||
for llm_info in llm_infos:
|
||||
llm_info["fid"] = factory_llm_info["name"]
|
||||
try:
|
||||
LLMService.save(**llm_info)
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
|
||||
LLMService.filter_delete([LLM.fid == "Local"])
|
||||
LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
|
||||
LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
|
||||
TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
|
||||
LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
|
||||
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
|
||||
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
|
||||
TenantService.filter_update([1 == 1], {
|
||||
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email"})
|
||||
## insert openai two embedding models to the current openai user.
|
||||
print("Start to insert 2 OpenAI embedding models...")
|
||||
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
|
||||
for tid in tenant_ids:
|
||||
for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
|
||||
row = row.to_dict()
|
||||
row["model_type"] = LLMType.EMBEDDING.value
|
||||
row["llm_name"] = "text-embedding-3-small"
|
||||
row["used_tokens"] = 0
|
||||
try:
|
||||
TenantLLMService.save(**row)
|
||||
row = deepcopy(row)
|
||||
row["llm_name"] = "text-embedding-3-large"
|
||||
TenantLLMService.save(**row)
|
||||
except Exception as e:
|
||||
pass
|
||||
break
|
||||
for kb_id in KnowledgebaseService.get_all_ids():
|
||||
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
|
||||
"""
|
||||
drop table llm;
|
||||
drop table llm_factories;
|
||||
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph';
|
||||
alter table knowledgebase modify avatar longtext;
|
||||
alter table user modify avatar longtext;
|
||||
alter table dialog modify icon longtext;
|
||||
"""
|
||||
|
||||
|
||||
def add_graph_templates():
|
||||
dir = os.path.join(get_project_base_directory(), "agent", "templates")
|
||||
for fnm in os.listdir(dir):
|
||||
try:
|
||||
cnvs = json.load(open(os.path.join(dir, fnm), "r"))
|
||||
try:
|
||||
CanvasTemplateService.save(**cnvs)
|
||||
except:
|
||||
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
|
||||
except Exception as e:
|
||||
print("Add graph templates error: ", e)
|
||||
print("------------", flush=True)
|
||||
|
||||
|
||||
def init_web_data():
|
||||
start_time = time.time()
|
||||
|
||||
init_llm_factory()
|
||||
if not UserService.get_all().count():
|
||||
init_superuser()
|
||||
|
||||
add_graph_templates()
|
||||
print("init web data success:{}".format(time.time() - start_time))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
init_web_db()
|
||||
init_web_data()
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import json
|
||||
import os
|
||||
import time
|
||||
import uuid
|
||||
from copy import deepcopy
|
||||
|
||||
from api.db import LLMType, UserTenantRole
|
||||
from api.db.db_models import init_database_tables as init_web_db, LLMFactories, LLM, TenantLLM
|
||||
from api.db.services import UserService
|
||||
from api.db.services.canvas_service import CanvasTemplateService
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMFactoriesService, LLMService, TenantLLMService, LLMBundle
|
||||
from api.db.services.user_service import TenantService, UserTenantService
|
||||
from api.settings import CHAT_MDL, EMBEDDING_MDL, ASR_MDL, IMAGE2TEXT_MDL, PARSERS, LLM_FACTORY, API_KEY, LLM_BASE_URL
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
|
||||
def init_superuser():
|
||||
user_info = {
|
||||
"id": uuid.uuid1().hex,
|
||||
"password": "admin",
|
||||
"nickname": "admin",
|
||||
"is_superuser": True,
|
||||
"email": "admin@ragflow.io",
|
||||
"creator": "system",
|
||||
"status": "1",
|
||||
}
|
||||
tenant = {
|
||||
"id": user_info["id"],
|
||||
"name": user_info["nickname"] + "‘s Kingdom",
|
||||
"llm_id": CHAT_MDL,
|
||||
"embd_id": EMBEDDING_MDL,
|
||||
"asr_id": ASR_MDL,
|
||||
"parser_ids": PARSERS,
|
||||
"img2txt_id": IMAGE2TEXT_MDL
|
||||
}
|
||||
usr_tenant = {
|
||||
"tenant_id": user_info["id"],
|
||||
"user_id": user_info["id"],
|
||||
"invited_by": user_info["id"],
|
||||
"role": UserTenantRole.OWNER
|
||||
}
|
||||
tenant_llm = []
|
||||
for llm in LLMService.query(fid=LLM_FACTORY):
|
||||
tenant_llm.append(
|
||||
{"tenant_id": user_info["id"], "llm_factory": LLM_FACTORY, "llm_name": llm.llm_name, "model_type": llm.model_type,
|
||||
"api_key": API_KEY, "api_base": LLM_BASE_URL})
|
||||
|
||||
if not UserService.save(**user_info):
|
||||
print("\033[93m【ERROR】\033[0mcan't init admin.")
|
||||
return
|
||||
TenantService.insert(**tenant)
|
||||
UserTenantService.insert(**usr_tenant)
|
||||
TenantLLMService.insert_many(tenant_llm)
|
||||
print(
|
||||
"【INFO】Super user initialized. \033[93memail: admin@ragflow.io, password: admin\033[0m. Changing the password after logining is strongly recomanded.")
|
||||
|
||||
chat_mdl = LLMBundle(tenant["id"], LLMType.CHAT, tenant["llm_id"])
|
||||
msg = chat_mdl.chat(system="", history=[
|
||||
{"role": "user", "content": "Hello!"}], gen_conf={})
|
||||
if msg.find("ERROR: ") == 0:
|
||||
print(
|
||||
"\33[91m【ERROR】\33[0m: ",
|
||||
"'{}' dosen't work. {}".format(
|
||||
tenant["llm_id"],
|
||||
msg))
|
||||
embd_mdl = LLMBundle(tenant["id"], LLMType.EMBEDDING, tenant["embd_id"])
|
||||
v, c = embd_mdl.encode(["Hello!"])
|
||||
if c == 0:
|
||||
print(
|
||||
"\33[91m【ERROR】\33[0m:",
|
||||
" '{}' dosen't work!".format(
|
||||
tenant["embd_id"]))
|
||||
|
||||
|
||||
def init_llm_factory():
|
||||
try:
|
||||
LLMService.filter_delete([(LLM.fid == "MiniMax" or LLM.fid == "Minimax")])
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
factory_llm_infos = json.load(
|
||||
open(
|
||||
os.path.join(get_project_base_directory(), "conf", "llm_factories.json"),
|
||||
"r",
|
||||
)
|
||||
)
|
||||
for factory_llm_info in factory_llm_infos["factory_llm_infos"]:
|
||||
llm_infos = factory_llm_info.pop("llm")
|
||||
try:
|
||||
LLMFactoriesService.save(**factory_llm_info)
|
||||
except Exception as e:
|
||||
pass
|
||||
LLMService.filter_delete([LLM.fid == factory_llm_info["name"]])
|
||||
for llm_info in llm_infos:
|
||||
llm_info["fid"] = factory_llm_info["name"]
|
||||
try:
|
||||
LLMService.save(**llm_info)
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
LLMFactoriesService.filter_delete([LLMFactories.name == "Local"])
|
||||
LLMService.filter_delete([LLM.fid == "Local"])
|
||||
LLMService.filter_delete([LLM.llm_name == "qwen-vl-max"])
|
||||
LLMService.filter_delete([LLM.fid == "Moonshot", LLM.llm_name == "flag-embedding"])
|
||||
TenantLLMService.filter_delete([TenantLLM.llm_factory == "Moonshot", TenantLLM.llm_name == "flag-embedding"])
|
||||
LLMFactoriesService.filter_delete([LLMFactoriesService.model.name == "QAnything"])
|
||||
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
|
||||
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
|
||||
TenantService.filter_update([1 == 1], {
|
||||
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph,email:Email"})
|
||||
## insert openai two embedding models to the current openai user.
|
||||
print("Start to insert 2 OpenAI embedding models...")
|
||||
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
|
||||
for tid in tenant_ids:
|
||||
for row in TenantLLMService.query(llm_factory="OpenAI", tenant_id=tid):
|
||||
row = row.to_dict()
|
||||
row["model_type"] = LLMType.EMBEDDING.value
|
||||
row["llm_name"] = "text-embedding-3-small"
|
||||
row["used_tokens"] = 0
|
||||
try:
|
||||
TenantLLMService.save(**row)
|
||||
row = deepcopy(row)
|
||||
row["llm_name"] = "text-embedding-3-large"
|
||||
TenantLLMService.save(**row)
|
||||
except Exception as e:
|
||||
pass
|
||||
break
|
||||
for kb_id in KnowledgebaseService.get_all_ids():
|
||||
KnowledgebaseService.update_by_id(kb_id, {"doc_num": DocumentService.get_kb_doc_count(kb_id)})
|
||||
"""
|
||||
drop table llm;
|
||||
drop table llm_factories;
|
||||
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph';
|
||||
alter table knowledgebase modify avatar longtext;
|
||||
alter table user modify avatar longtext;
|
||||
alter table dialog modify icon longtext;
|
||||
"""
|
||||
|
||||
|
||||
def add_graph_templates():
|
||||
dir = os.path.join(get_project_base_directory(), "agent", "templates")
|
||||
for fnm in os.listdir(dir):
|
||||
try:
|
||||
cnvs = json.load(open(os.path.join(dir, fnm), "r"))
|
||||
try:
|
||||
CanvasTemplateService.save(**cnvs)
|
||||
except:
|
||||
CanvasTemplateService.update_by_id(cnvs["id"], cnvs)
|
||||
except Exception as e:
|
||||
print("Add graph templates error: ", e)
|
||||
print("------------", flush=True)
|
||||
|
||||
|
||||
def init_web_data():
|
||||
start_time = time.time()
|
||||
|
||||
init_llm_factory()
|
||||
if not UserService.get_all().count():
|
||||
init_superuser()
|
||||
|
||||
add_graph_templates()
|
||||
print("init web data success:{}".format(time.time() - start_time))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
init_web_db()
|
||||
init_web_data()
|
||||
|
||||
Reference in New Issue
Block a user