refine for English corpus (#135)

This commit is contained in:
KevinHuSh
2024-03-20 16:56:16 +08:00
committed by GitHub
parent 78727c8809
commit 6999598101
12 changed files with 216 additions and 125 deletions

View File

@ -3,14 +3,9 @@ from collections import Counter
from rag.utils import num_tokens_from_string
from . import huqie
from nltk import word_tokenize
import re
import copy
from nltk.stem import PorterStemmer
stemmer = PorterStemmer()
BULLET_PATTERN = [[
r"第[零一二三四五六七八九十百0-9]+(分?编|部分)",
@ -77,13 +72,8 @@ def is_english(texts):
def tokenize(d, t, eng):
d["content_with_weight"] = t
t = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", t)
if eng:
t = re.sub(r"([a-z])-([a-z])", r"\1\2", t)
d["content_ltks"] = " ".join([stemmer.stem(w)
for w in word_tokenize(t)])
else:
d["content_ltks"] = huqie.qie(t)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["content_ltks"] = huqie.qie(t)
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
def tokenize_table(tbls, doc, eng, batch_size=10):
@ -94,8 +84,7 @@ def tokenize_table(tbls, doc, eng, batch_size=10):
continue
if isinstance(rows, str):
d = copy.deepcopy(doc)
r = re.sub(r"<[^<>]{,12}>", "", rows)
tokenize(d, r, eng)
tokenize(d, rows, eng)
d["content_with_weight"] = rows
d["image"] = img
add_positions(d, poss)

View File

@ -8,7 +8,8 @@ import re
import string
import sys
from hanziconv import HanziConv
from nltk import word_tokenize
from nltk.stem import PorterStemmer, WordNetLemmatizer
from api.utils.file_utils import get_project_base_directory
@ -45,6 +46,9 @@ class Huqie:
self.trie_ = datrie.Trie(string.printable)
self.DIR_ = os.path.join(get_project_base_directory(), "rag/res", "huqie")
self.stemmer = PorterStemmer()
self.lemmatizer = WordNetLemmatizer()
self.SPLIT_CHAR = r"([ ,\.<>/?;'\[\]\\`!@#$%^&*\(\)\{\}\|_+=《》,。?、;‘’:“”【】~!¥%……()——-]+|[a-z\.-]+|[0-9,\.-]+)"
try:
self.trie_ = datrie.Trie.load(self.DIR_ + ".txt.trie")
@ -239,6 +243,10 @@ class Huqie:
def qie(self, line):
line = self._strQ2B(line).lower()
line = self._tradi2simp(line)
zh_num = len([1 for c in line if is_chinese(c)])
if zh_num < len(line) * 0.2:
return " ".join([self.stemmer.stem(self.lemmatizer.lemmatize(t)) for t in word_tokenize(line)])
arr = re.split(self.SPLIT_CHAR, line)
res = []
for L in arr:
@ -290,8 +298,12 @@ class Huqie:
return self.merge_(res)
def qieqie(self, tks):
tks = tks.split(" ")
zh_num = len([1 for c in tks if c and is_chinese(c[0])])
if zh_num < len(tks) * 0.2:return " ".join(tks)
res = []
for tk in tks.split(" "):
for tk in tks:
if len(tk) < 3 or re.match(r"[0-9,\.-]+$", tk):
res.append(tk)
continue

View File

@ -4,8 +4,8 @@ import json
import re
import logging
import copy
import math
from elasticsearch_dsl import Q, Search
from elasticsearch_dsl import Q
from rag.nlp import huqie, term_weight, synonym
@ -33,12 +33,14 @@ class EsQueryer:
@staticmethod
def rmWWW(txt):
txt = re.sub(
r"是*(什么样的|哪家|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*",
"",
txt)
return re.sub(
r"(what|who|how|which|where|why|(is|are|were|was) there) (is|are|were|was|to)*", "", txt, re.IGNORECASE)
patts = [
(r"是*(什么样的|哪家|那家|啥样|咋样了|什么时候|何时|何地|何人|是否|是不是|多少|哪里|怎么|哪儿|怎么样|如何|哪些|是啥|啥是|啊|吗|呢|吧|咋|什么|有没有|呀)是*", ""),
(r"(^| )(what|who|how|which|where|why)('re|'s)? ", " "),
(r"(^| )('s|'re|is|are|were|was|do|does|did|don't|doesn't|didn't|has|have|be|there|you|me|your|my|mine|just|please|may|i|should|would|wouldn't|will|won't|done|go|for|with|so|the|a|an|by|i'm|it's|he's|she's|they|they're|you're|as|by|on|in|at|up|out|down)", " ")
]
for r, p in patts:
txt = re.sub(r, p, txt, flags=re.IGNORECASE)
return txt
def question(self, txt, tbl="qa", min_match="60%"):
txt = re.sub(
@ -50,7 +52,7 @@ class EsQueryer:
txt = EsQueryer.rmWWW(txt)
if not self.isChinese(txt):
tks = [t for t in txt.split(" ") if t.strip()]
tks = huqie.qie(txt).split(" ")
q = tks
for i in range(1, len(tks)):
q.append("\"%s %s\"^2" % (tks[i - 1], tks[i]))
@ -58,9 +60,9 @@ class EsQueryer:
q.append(txt)
return Q("bool",
must=Q("query_string", fields=self.flds,
type="best_fields", query=" OR ".join(q),
type="best_fields", query=" ".join(q),
boost=1, minimum_should_match=min_match)
), txt.split(" ")
), tks
def needQieqie(tk):
if len(tk) < 4:
@ -160,8 +162,8 @@ class EsQueryer:
s += v# * dtwt[k]
q = 1e-9
for k, v in qtwt.items():
q += v * v
d = 1e-9
for k, v in dtwt.items():
d += v * v
return s / q#math.sqrt(q) / math.sqrt(d)
q += v #* v
#d = 1e-9
#for k, v in dtwt.items():
# d += v * v
return s / q #math.sqrt(q) / math.sqrt(d)

View File

@ -196,7 +196,24 @@ class Dealer:
def insert_citations(self, answer, chunks, chunk_v,
embd_mdl, tkweight=0.7, vtweight=0.3):
assert len(chunks) == len(chunk_v)
pieces = re.split(r"([;。?!\n]|[a-z][.?;!][ \n])", answer)
pieces = re.split(r"(```)", answer)
if len(pieces) >= 3:
i = 0
pieces_ = []
while i < len(pieces):
if pieces[i] == "```":
st = i
i += 1
while i<len(pieces) and pieces[i] != "```":
i += 1
if i < len(pieces): i += 1
pieces_.append("".join(pieces[st: i])+"\n")
else:
pieces_.extend(re.split(r"([^\|][;。?!\n]|[a-z][.?;!][ \n])", pieces[i]))
i += 1
pieces = pieces_
else:
pieces = re.split(r"([^\|][;。?!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
pieces[i - 1] += pieces[i][0]
@ -226,7 +243,7 @@ class Dealer:
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
if mx < 0.66:
if mx < 0.7:
continue
cites[idx[i]] = list(
set([str(ii) for ii in range(len(chunk_v)) if sim[ii] > mx]))[:4]
@ -249,6 +266,7 @@ class Dealer:
def rerank(self, sres, query, tkweight=0.3,
vtweight=0.7, cfield="content_ltks"):
_, keywords = self.qryr.question(query)
ins_embd = [
Dealer.trans2floats(
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
@ -258,8 +276,7 @@ class Dealer:
for i in sres.ids]
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(
query).split(" "),
keywords,
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim