add dockerfile for cuda envirement. Refine table search strategy, (#123)

This commit is contained in:
KevinHuSh
2024-03-14 19:45:29 +08:00
committed by GitHub
parent 937048e5fb
commit 675a9f8d9a
18 changed files with 259 additions and 84 deletions

View File

@ -19,18 +19,20 @@ from .cv_model import *
EmbeddingModel = {
"local": HuEmbedding,
"Local": HuEmbedding,
"OpenAI": OpenAIEmbed,
"通义千问": HuEmbedding, #QWenEmbed,
"智谱AI": ZhipuEmbed
"智谱AI": ZhipuEmbed,
"Moonshot": HuEmbedding
}
CvModel = {
"OpenAI": GptV4,
"local": LocalCV,
"Local": LocalCV,
"通义千问": QWenCV,
"智谱AI": Zhipu4V
"智谱AI": Zhipu4V,
"Moonshot": LocalCV
}
@ -38,6 +40,7 @@ ChatModel = {
"OpenAI": GptTurbo,
"智谱AI": ZhipuChat,
"通义千问": QWenChat,
"local": LocalLLM
"Local": LocalLLM,
"Moonshot": MoonshotChat
}

View File

@ -14,11 +14,8 @@
# limitations under the License.
#
from abc import ABC
from copy import deepcopy
from openai import OpenAI
import openai
from rag.nlp import is_english
from rag.utils import num_tokens_from_string
@ -52,6 +49,12 @@ class GptTurbo(Base):
return "**ERROR**: "+str(e), 0
class MoonshotChat(GptTurbo):
def __init__(self, key, model_name="moonshot-v1-8k"):
self.client = OpenAI(api_key=key, base_url="https://api.moonshot.cn/v1",)
self.model_name = model_name
from dashscope import Generation
class QWenChat(Base):
def __init__(self, key, model_name=Generation.Models.qwen_turbo):

View File

@ -4,7 +4,7 @@ import random
import time
from multiprocessing.connection import Listener
from threading import Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
class RPCHandler:
@ -47,14 +47,27 @@ tokenizer = None
def chat(messages, gen_conf):
global tokenizer
model = Model()
roles = {"system":"System", "user": "User", "assistant": "Assistant"}
line = ["{}: {}".format(roles[m["role"].lower()], m["content"]) for m in messages]
line = "\n".join(line) + "\nAssistant: "
tokens = tokenizer([line], return_tensors='pt')
tokens = {k: tokens[k].to(model.device) if isinstance(tokens[k], torch.Tensor) else tokens[k] for k in
tokens.keys()}
res = [tokenizer.decode(t) for t in model.generate(**tokens, **gen_conf)][0]
return res.split("Assistant: ")[-1]
try:
conf = {"max_new_tokens": int(gen_conf.get("max_tokens", 256)), "temperature": float(gen_conf.get("temperature", 0.1))}
print(messages, conf)
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
model_inputs.input_ids,
**conf
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
except Exception as e:
return str(e)
def Model():
@ -71,20 +84,13 @@ if __name__ == "__main__":
handler = RPCHandler()
handler.register_function(chat)
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.generation.utils import GenerationConfig
models = []
for _ in range(2):
for _ in range(1):
m = AutoModelForCausalLM.from_pretrained(args.model_name,
device_map="auto",
torch_dtype='auto',
trust_remote_code=True)
m.generation_config = GenerationConfig.from_pretrained(args.model_name)
m.generation_config.pad_token_id = m.generation_config.eos_token_id
torch_dtype='auto')
models.append(m)
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_fast=False,
trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
# Run the server
rpc_server(handler, ('0.0.0.0', args.port), authkey=b'infiniflow-token4kevinhu')