mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
add dockerfile for cuda envirement. Refine table search strategy, (#123)
This commit is contained in:
@ -67,7 +67,7 @@ class Excel(ExcelParser):
|
||||
|
||||
def trans_datatime(s):
|
||||
try:
|
||||
return datetime_parse(s.strip()).strftime("%Y-%m-%dT%H:%M:%S")
|
||||
return datetime_parse(s.strip()).strftime("%Y-%m-%d %H:%M:%S")
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
@ -80,6 +80,7 @@ def trans_bool(s):
|
||||
|
||||
|
||||
def column_data_type(arr):
|
||||
arr = list(arr)
|
||||
uni = len(set([a for a in arr if a is not None]))
|
||||
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
|
||||
trans = {t: f for f, t in
|
||||
@ -130,7 +131,7 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
|
||||
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = Excel()
|
||||
dfs = excel_parser(filename, binary, callback)
|
||||
dfs = excel_parser(filename, binary, from_page=from_page, to_page=to_page, callback=callback)
|
||||
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = ""
|
||||
@ -188,7 +189,7 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
|
||||
df[clmns[j]] = cln
|
||||
if ty == "text":
|
||||
txts.extend([str(c) for c in cln if c])
|
||||
clmns_map = [(py_clmns[i] + fieds_map[clmn_tys[i]], clmns[i])
|
||||
clmns_map = [(py_clmns[i] + fieds_map[clmn_tys[i]], clmns[i].replace("_", " "))
|
||||
for i in range(len(clmns))]
|
||||
|
||||
eng = lang.lower() == "english"#is_english(txts)
|
||||
@ -201,6 +202,8 @@ def chunk(filename, binary=None, from_page=0, to_page=10000000000, lang="Chinese
|
||||
for j in range(len(clmns)):
|
||||
if row[clmns[j]] is None:
|
||||
continue
|
||||
if not str(row[clmns[j]]):
|
||||
continue
|
||||
fld = clmns_map[j][0]
|
||||
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(
|
||||
row[clmns[j]])
|
||||
|
||||
@ -19,18 +19,20 @@ from .cv_model import *
|
||||
|
||||
|
||||
EmbeddingModel = {
|
||||
"local": HuEmbedding,
|
||||
"Local": HuEmbedding,
|
||||
"OpenAI": OpenAIEmbed,
|
||||
"通义千问": HuEmbedding, #QWenEmbed,
|
||||
"智谱AI": ZhipuEmbed
|
||||
"智谱AI": ZhipuEmbed,
|
||||
"Moonshot": HuEmbedding
|
||||
}
|
||||
|
||||
|
||||
CvModel = {
|
||||
"OpenAI": GptV4,
|
||||
"local": LocalCV,
|
||||
"Local": LocalCV,
|
||||
"通义千问": QWenCV,
|
||||
"智谱AI": Zhipu4V
|
||||
"智谱AI": Zhipu4V,
|
||||
"Moonshot": LocalCV
|
||||
}
|
||||
|
||||
|
||||
@ -38,6 +40,7 @@ ChatModel = {
|
||||
"OpenAI": GptTurbo,
|
||||
"智谱AI": ZhipuChat,
|
||||
"通义千问": QWenChat,
|
||||
"local": LocalLLM
|
||||
"Local": LocalLLM,
|
||||
"Moonshot": MoonshotChat
|
||||
}
|
||||
|
||||
|
||||
@ -14,11 +14,8 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
from abc import ABC
|
||||
from copy import deepcopy
|
||||
|
||||
from openai import OpenAI
|
||||
import openai
|
||||
|
||||
from rag.nlp import is_english
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
@ -52,6 +49,12 @@ class GptTurbo(Base):
|
||||
return "**ERROR**: "+str(e), 0
|
||||
|
||||
|
||||
class MoonshotChat(GptTurbo):
|
||||
def __init__(self, key, model_name="moonshot-v1-8k"):
|
||||
self.client = OpenAI(api_key=key, base_url="https://api.moonshot.cn/v1",)
|
||||
self.model_name = model_name
|
||||
|
||||
|
||||
from dashscope import Generation
|
||||
class QWenChat(Base):
|
||||
def __init__(self, key, model_name=Generation.Models.qwen_turbo):
|
||||
|
||||
@ -4,7 +4,7 @@ import random
|
||||
import time
|
||||
from multiprocessing.connection import Listener
|
||||
from threading import Thread
|
||||
import torch
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
|
||||
class RPCHandler:
|
||||
@ -47,14 +47,27 @@ tokenizer = None
|
||||
def chat(messages, gen_conf):
|
||||
global tokenizer
|
||||
model = Model()
|
||||
roles = {"system":"System", "user": "User", "assistant": "Assistant"}
|
||||
line = ["{}: {}".format(roles[m["role"].lower()], m["content"]) for m in messages]
|
||||
line = "\n".join(line) + "\nAssistant: "
|
||||
tokens = tokenizer([line], return_tensors='pt')
|
||||
tokens = {k: tokens[k].to(model.device) if isinstance(tokens[k], torch.Tensor) else tokens[k] for k in
|
||||
tokens.keys()}
|
||||
res = [tokenizer.decode(t) for t in model.generate(**tokens, **gen_conf)][0]
|
||||
return res.split("Assistant: ")[-1]
|
||||
try:
|
||||
conf = {"max_new_tokens": int(gen_conf.get("max_tokens", 256)), "temperature": float(gen_conf.get("temperature", 0.1))}
|
||||
print(messages, conf)
|
||||
text = tokenizer.apply_chat_template(
|
||||
messages,
|
||||
tokenize=False,
|
||||
add_generation_prompt=True
|
||||
)
|
||||
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
||||
|
||||
generated_ids = model.generate(
|
||||
model_inputs.input_ids,
|
||||
**conf
|
||||
)
|
||||
generated_ids = [
|
||||
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
||||
]
|
||||
|
||||
return tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
||||
except Exception as e:
|
||||
return str(e)
|
||||
|
||||
|
||||
def Model():
|
||||
@ -71,20 +84,13 @@ if __name__ == "__main__":
|
||||
handler = RPCHandler()
|
||||
handler.register_function(chat)
|
||||
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from transformers.generation.utils import GenerationConfig
|
||||
|
||||
models = []
|
||||
for _ in range(2):
|
||||
for _ in range(1):
|
||||
m = AutoModelForCausalLM.from_pretrained(args.model_name,
|
||||
device_map="auto",
|
||||
torch_dtype='auto',
|
||||
trust_remote_code=True)
|
||||
m.generation_config = GenerationConfig.from_pretrained(args.model_name)
|
||||
m.generation_config.pad_token_id = m.generation_config.eos_token_id
|
||||
torch_dtype='auto')
|
||||
models.append(m)
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_fast=False,
|
||||
trust_remote_code=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
||||
|
||||
# Run the server
|
||||
rpc_server(handler, ('0.0.0.0', args.port), authkey=b'infiniflow-token4kevinhu')
|
||||
|
||||
@ -7,6 +7,7 @@ from elasticsearch_dsl import Q, Search
|
||||
from typing import List, Optional, Dict, Union
|
||||
from dataclasses import dataclass
|
||||
|
||||
from api.settings import chat_logger
|
||||
from rag.settings import es_logger
|
||||
from rag.utils import rmSpace
|
||||
from rag.nlp import huqie, query
|
||||
@ -333,15 +334,16 @@ class Dealer:
|
||||
replaces = []
|
||||
for r in re.finditer(r" ([a-z_]+_l?tks)( like | ?= ?)'([^']+)'", sql):
|
||||
fld, v = r.group(1), r.group(3)
|
||||
match = " MATCH({}, '{}', 'operator=OR;fuzziness=AUTO:1,3;minimum_should_match=30%') ".format(fld, huqie.qieqie(huqie.qie(v)))
|
||||
match = " MATCH({}, '{}', 'operator=OR;minimum_should_match=30%') ".format(fld, huqie.qieqie(huqie.qie(v)))
|
||||
replaces.append(("{}{}'{}'".format(r.group(1), r.group(2), r.group(3)), match))
|
||||
|
||||
for p, r in replaces: sql = sql.replace(p, r, 1)
|
||||
es_logger.info(f"To es: {sql}")
|
||||
chat_logger.info(f"To es: {sql}")
|
||||
|
||||
try:
|
||||
tbl = self.es.sql(sql, fetch_size, format)
|
||||
return tbl
|
||||
except Exception as e:
|
||||
es_logger.error(f"SQL failure: {sql} =>" + str(e))
|
||||
chat_logger.error(f"SQL failure: {sql} =>" + str(e))
|
||||
return {"error": str(e)}
|
||||
|
||||
|
||||
@ -169,16 +169,25 @@ def init_kb(row):
|
||||
|
||||
|
||||
def embedding(docs, mdl, parser_config={}, callback=None):
|
||||
batch_size = 32
|
||||
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
|
||||
d["content_with_weight"] for d in docs]
|
||||
tk_count = 0
|
||||
if len(tts) == len(cnts):
|
||||
tts, c = mdl.encode(tts)
|
||||
tk_count += c
|
||||
tts_ = np.array([])
|
||||
for i in range(0, len(tts), batch_size):
|
||||
vts, c = mdl.encode(tts[i: i + batch_size])
|
||||
if len(tts_) == 0:
|
||||
tts_ = vts
|
||||
else:
|
||||
tts_ = np.concatenate((tts_, vts), axis=0)
|
||||
tk_count += c
|
||||
callback(prog=0.6 + 0.1 * (i + 1) / len(tts), msg="")
|
||||
tts = tts_
|
||||
|
||||
cnts_ = np.array([])
|
||||
for i in range(0, len(cnts), 8):
|
||||
vts, c = mdl.encode(cnts[i: i+8])
|
||||
for i in range(0, len(cnts), batch_size):
|
||||
vts, c = mdl.encode(cnts[i: i+batch_size])
|
||||
if len(cnts_) == 0: cnts_ = vts
|
||||
else: cnts_ = np.concatenate((cnts_, vts), axis=0)
|
||||
tk_count += c
|
||||
|
||||
@ -249,6 +249,8 @@ class HuEs:
|
||||
except ConnectionTimeout as e:
|
||||
es_logger.error("Timeout【Q】:" + sql)
|
||||
continue
|
||||
except Exception as e:
|
||||
raise e
|
||||
es_logger.error("ES search timeout for 3 times!")
|
||||
raise ConnectionTimeout()
|
||||
|
||||
|
||||
Reference in New Issue
Block a user