mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
Add task moduel, and pipline the task and every parser (#49)
This commit is contained in:
130
rag/svr/task_broker.py
Normal file
130
rag/svr/task_broker.py
Normal file
@ -0,0 +1,130 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
import random
|
||||
from timeit import default_timer as timer
|
||||
from api.db.db_models import Task
|
||||
from api.db.db_utils import bulk_insert_into_db
|
||||
from api.db.services.task_service import TaskService
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
from rag.settings import cron_logger
|
||||
from rag.utils import MINIO
|
||||
from rag.utils import findMaxTm
|
||||
import pandas as pd
|
||||
from api.db import FileType
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.settings import database_logger
|
||||
from api.utils import get_format_time, get_uuid
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
|
||||
def collect(tm):
|
||||
docs = DocumentService.get_newly_uploaded(tm)
|
||||
if len(docs) == 0:
|
||||
return pd.DataFrame()
|
||||
docs = pd.DataFrame(docs)
|
||||
mtm = docs["update_time"].max()
|
||||
cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
|
||||
return docs
|
||||
|
||||
|
||||
def set_dispatching(docid):
|
||||
try:
|
||||
DocumentService.update_by_id(
|
||||
docid, {"progress": random.randint(0, 3) / 100.,
|
||||
"progress_msg": "Task dispatched...",
|
||||
"process_begin_at": get_format_time()
|
||||
})
|
||||
except Exception as e:
|
||||
cron_logger.error("set_dispatching:({}), {}".format(docid, str(e)))
|
||||
|
||||
|
||||
def dispatch():
|
||||
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"broker.tm")
|
||||
tm = findMaxTm(tm_fnm)
|
||||
rows = collect(tm)
|
||||
if len(rows) == 0:
|
||||
return
|
||||
|
||||
tmf = open(tm_fnm, "a+")
|
||||
for _, r in rows.iterrows():
|
||||
try:
|
||||
tsks = TaskService.query(doc_id=r["id"])
|
||||
if tsks:
|
||||
for t in tsks:
|
||||
TaskService.delete_by_id(t.id)
|
||||
except Exception as e:
|
||||
cron_logger.error("delete task exception:" + str(e))
|
||||
|
||||
def new_task():
|
||||
nonlocal r
|
||||
return {
|
||||
"id": get_uuid(),
|
||||
"doc_id": r["id"]
|
||||
}
|
||||
|
||||
tsks = []
|
||||
if r["type"] == FileType.PDF.value:
|
||||
pages = HuParser.total_page_number(r["name"], MINIO.get(r["kb_id"], r["location"]))
|
||||
for p in range(0, pages, 10):
|
||||
task = new_task()
|
||||
task["from_page"] = p
|
||||
task["to_page"] = min(p + 10, pages)
|
||||
tsks.append(task)
|
||||
else:
|
||||
tsks.append(new_task())
|
||||
print(tsks)
|
||||
bulk_insert_into_db(Task, tsks, True)
|
||||
set_dispatching(r["id"])
|
||||
tmf.write(str(r["update_time"]) + "\n")
|
||||
tmf.close()
|
||||
|
||||
|
||||
def update_progress():
|
||||
docs = DocumentService.get_unfinished_docs()
|
||||
for d in docs:
|
||||
try:
|
||||
tsks = TaskService.query(doc_id=d["id"], order_by=Task.create_time)
|
||||
if not tsks:continue
|
||||
msg = []
|
||||
prg = 0
|
||||
finished = True
|
||||
bad = 0
|
||||
for t in tsks:
|
||||
if 0 <= t.progress < 1: finished = False
|
||||
prg += t.progress if t.progress >= 0 else 0
|
||||
msg.append(t.progress_msg)
|
||||
if t.progress == -1: bad += 1
|
||||
prg /= len(tsks)
|
||||
if finished and bad: prg = -1
|
||||
msg = "\n".join(msg)
|
||||
DocumentService.update_by_id(d["id"], {"progress": prg, "progress_msg": msg, "process_duation": timer()-d["process_begin_at"].timestamp()})
|
||||
except Exception as e:
|
||||
cron_logger.error("fetch task exception:" + str(e))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
peewee_logger = logging.getLogger('peewee')
|
||||
peewee_logger.propagate = False
|
||||
peewee_logger.addHandler(database_logger.handlers[0])
|
||||
peewee_logger.setLevel(database_logger.level)
|
||||
|
||||
while True:
|
||||
dispatch()
|
||||
time.sleep(3)
|
||||
update_progress()
|
||||
@ -19,49 +19,59 @@ import logging
|
||||
import os
|
||||
import hashlib
|
||||
import copy
|
||||
import time
|
||||
import random
|
||||
import re
|
||||
import sys
|
||||
from functools import partial
|
||||
from timeit import default_timer as timer
|
||||
|
||||
from api.db.services.task_service import TaskService
|
||||
from rag.llm import EmbeddingModel, CvModel
|
||||
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
|
||||
from rag.utils import ELASTICSEARCH
|
||||
from rag.utils import MINIO
|
||||
from rag.utils import rmSpace, findMaxTm
|
||||
|
||||
from rag.nlp import huchunk, huqie, search
|
||||
from rag.nlp import search
|
||||
from io import BytesIO
|
||||
import pandas as pd
|
||||
from elasticsearch_dsl import Q
|
||||
from PIL import Image
|
||||
from rag.parser import (
|
||||
PdfParser,
|
||||
DocxParser,
|
||||
ExcelParser
|
||||
)
|
||||
from rag.nlp.huchunk import (
|
||||
PdfChunker,
|
||||
DocxChunker,
|
||||
ExcelChunker,
|
||||
PptChunker,
|
||||
TextChunker
|
||||
)
|
||||
from api.db import LLMType
|
||||
|
||||
from rag.app import laws, paper, presentation, manual
|
||||
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.llm_service import TenantLLMService, LLMBundle
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.settings import database_logger
|
||||
from api.utils import get_format_time
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
BATCH_SIZE = 64
|
||||
|
||||
PDF = PdfChunker(PdfParser())
|
||||
DOC = DocxChunker(DocxParser())
|
||||
EXC = ExcelChunker(ExcelParser())
|
||||
PPT = PptChunker()
|
||||
FACTORY = {
|
||||
ParserType.GENERAL.value: laws,
|
||||
ParserType.PAPER.value: paper,
|
||||
ParserType.PRESENTATION.value: presentation,
|
||||
ParserType.MANUAL.value: manual,
|
||||
ParserType.LAWS.value: laws,
|
||||
}
|
||||
|
||||
|
||||
def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."):
|
||||
cancel = TaskService.do_cancel(task_id)
|
||||
if cancel:
|
||||
msg = "Canceled."
|
||||
prog = -1
|
||||
|
||||
if to_page > 0: msg = f"Page({from_page}~{to_page}): " + msg
|
||||
d = {"progress_msg": msg}
|
||||
if prog is not None: d["progress"] = prog
|
||||
try:
|
||||
TaskService.update_by_id(task_id, d)
|
||||
except Exception as e:
|
||||
cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
|
||||
|
||||
if cancel:sys.exit()
|
||||
|
||||
|
||||
"""
|
||||
def chuck_doc(name, binary, tenant_id, cvmdl=None):
|
||||
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
||||
if suff.find("pdf") >= 0:
|
||||
@ -81,27 +91,17 @@ def chuck_doc(name, binary, tenant_id, cvmdl=None):
|
||||
return field
|
||||
|
||||
return TextChunker()(binary)
|
||||
"""
|
||||
|
||||
|
||||
def collect(comm, mod, tm):
|
||||
docs = DocumentService.get_newly_uploaded(tm, mod, comm)
|
||||
if len(docs) == 0:
|
||||
tasks = TaskService.get_tasks(tm, mod, comm)
|
||||
if len(tasks) == 0:
|
||||
return pd.DataFrame()
|
||||
docs = pd.DataFrame(docs)
|
||||
mtm = docs["update_time"].max()
|
||||
cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
|
||||
return docs
|
||||
|
||||
|
||||
def set_progress(docid, prog, msg="Processing...", begin=False):
|
||||
d = {"progress": prog, "progress_msg": msg}
|
||||
if begin:
|
||||
d["process_begin_at"] = get_format_time()
|
||||
try:
|
||||
DocumentService.update_by_id(
|
||||
docid, {"progress": prog, "progress_msg": msg})
|
||||
except Exception as e:
|
||||
cron_logger.error("set_progress:({}), {}".format(docid, str(e)))
|
||||
tasks = pd.DataFrame(tasks)
|
||||
mtm = tasks["update_time"].max()
|
||||
cron_logger.info("TOTAL:{}, To:{}".format(len(tasks), mtm))
|
||||
return tasks
|
||||
|
||||
|
||||
def build(row, cvmdl):
|
||||
@ -110,97 +110,50 @@ def build(row, cvmdl):
|
||||
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
||||
return []
|
||||
|
||||
# res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
|
||||
# if ELASTICSEARCH.getTotal(res) > 0:
|
||||
# ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
|
||||
# scripts="""
|
||||
# if(!ctx._source.kb_id.contains('%s'))
|
||||
# ctx._source.kb_id.add('%s');
|
||||
# """ % (str(row["kb_id"]), str(row["kb_id"])),
|
||||
# idxnm=search.index_name(row["tenant_id"])
|
||||
# )
|
||||
# set_progress(row["id"], 1, "Done")
|
||||
# return []
|
||||
|
||||
random.seed(time.time())
|
||||
set_progress(row["id"], random.randint(0, 20) /
|
||||
100., "Finished preparing! Start to slice file!", True)
|
||||
callback = partial(set_progress, row["id"], row["from_page"], row["to_page"])
|
||||
chunker = FACTORY[row["parser_id"]]
|
||||
try:
|
||||
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
||||
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), row["tenant_id"], cvmdl)
|
||||
cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"],
|
||||
callback)
|
||||
except Exception as e:
|
||||
if re.search("(No such file|not found)", str(e)):
|
||||
set_progress(
|
||||
row["id"], -1, "Can not find file <%s>" %
|
||||
row["doc_name"])
|
||||
callback(-1, "Can not find file <%s>" % row["doc_name"])
|
||||
else:
|
||||
set_progress(
|
||||
row["id"], -1, f"Internal server error: %s" %
|
||||
str(e).replace(
|
||||
"'", ""))
|
||||
callback(-1, f"Internal server error: %s" % str(e).replace("'", ""))
|
||||
|
||||
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
||||
|
||||
return []
|
||||
|
||||
if not obj.text_chunks and not obj.table_chunks:
|
||||
set_progress(
|
||||
row["id"],
|
||||
1,
|
||||
"Nothing added! Mostly, file type unsupported yet.")
|
||||
return []
|
||||
callback(msg="Finished slicing files. Start to embedding the content.")
|
||||
|
||||
set_progress(row["id"], random.randint(20, 60) / 100.,
|
||||
"Finished slicing files. Start to embedding the content.")
|
||||
|
||||
doc = {
|
||||
"doc_id": row["id"],
|
||||
"kb_id": [str(row["kb_id"])],
|
||||
"docnm_kwd": os.path.split(row["location"])[-1],
|
||||
"title_tks": huqie.qie(row["name"])
|
||||
}
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
output_buffer = BytesIO()
|
||||
docs = []
|
||||
for txt, img in obj.text_chunks:
|
||||
doc = {
|
||||
"doc_id": row["doc_id"],
|
||||
"kb_id": [str(row["kb_id"])]
|
||||
}
|
||||
for ck in cks:
|
||||
d = copy.deepcopy(doc)
|
||||
d.update(ck)
|
||||
md5 = hashlib.md5()
|
||||
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
||||
md5.update((ck["content_with_weight"] + str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
d["content_ltks"] = huqie.qie(txt)
|
||||
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
|
||||
if not img:
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
if not d.get("image"):
|
||||
docs.append(d)
|
||||
continue
|
||||
|
||||
if isinstance(img, bytes):
|
||||
output_buffer = BytesIO(img)
|
||||
output_buffer = BytesIO()
|
||||
if isinstance(d["image"], bytes):
|
||||
output_buffer = BytesIO(d["image"])
|
||||
else:
|
||||
img.save(output_buffer, format='JPEG')
|
||||
d["image"].save(output_buffer, format='JPEG')
|
||||
|
||||
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
||||
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
docs.append(d)
|
||||
|
||||
for arr, img in obj.table_chunks:
|
||||
for i, txt in enumerate(arr):
|
||||
d = copy.deepcopy(doc)
|
||||
d["content_ltks"] = huqie.qie(txt)
|
||||
md5 = hashlib.md5()
|
||||
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
if not img:
|
||||
docs.append(d)
|
||||
continue
|
||||
img.save(output_buffer, format='JPEG')
|
||||
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
||||
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
||||
d["create_time"] = str(datetime.datetime.now()).replace("T", " ")[:19]
|
||||
docs.append(d)
|
||||
set_progress(row["id"], random.randint(60, 70) /
|
||||
100., "Continue embedding the content.")
|
||||
|
||||
return docs
|
||||
|
||||
|
||||
@ -213,7 +166,7 @@ def init_kb(row):
|
||||
|
||||
|
||||
def embedding(docs, mdl):
|
||||
tts, cnts = [rmSpace(d["title_tks"]) for d in docs], [rmSpace(d["content_ltks"]) for d in docs]
|
||||
tts, cnts = [d["docnm_kwd"] for d in docs], [d["content_with_weight"] for d in docs]
|
||||
tk_count = 0
|
||||
tts, c = mdl.encode(tts)
|
||||
tk_count += c
|
||||
@ -223,7 +176,7 @@ def embedding(docs, mdl):
|
||||
assert len(vects) == len(docs)
|
||||
for i, d in enumerate(docs):
|
||||
v = vects[i].tolist()
|
||||
d["q_%d_vec"%len(v)] = v
|
||||
d["q_%d_vec" % len(v)] = v
|
||||
return tk_count
|
||||
|
||||
|
||||
@ -239,11 +192,12 @@ def main(comm, mod):
|
||||
try:
|
||||
embd_mdl = LLMBundle(r["tenant_id"], LLMType.EMBEDDING)
|
||||
cv_mdl = LLMBundle(r["tenant_id"], LLMType.IMAGE2TEXT)
|
||||
#TODO: sequence2text model
|
||||
# TODO: sequence2text model
|
||||
except Exception as e:
|
||||
set_progress(r["id"], -1, str(e))
|
||||
continue
|
||||
|
||||
callback = partial(set_progress, r["id"], r["from_page"], r["to_page"])
|
||||
st_tm = timer()
|
||||
cks = build(r, cv_mdl)
|
||||
if not cks:
|
||||
@ -254,21 +208,20 @@ def main(comm, mod):
|
||||
try:
|
||||
tk_count = embedding(cks, embd_mdl)
|
||||
except Exception as e:
|
||||
set_progress(r["id"], -1, "Embedding error:{}".format(str(e)))
|
||||
callback(-1, "Embedding error:{}".format(str(e)))
|
||||
cron_logger.error(str(e))
|
||||
continue
|
||||
|
||||
set_progress(r["id"], random.randint(70, 95) / 100.,
|
||||
"Finished embedding! Start to build index!")
|
||||
callback(msg="Finished embedding! Start to build index!")
|
||||
init_kb(r)
|
||||
chunk_count = len(set([c["_id"] for c in cks]))
|
||||
callback(1., "Done!")
|
||||
es_r = ELASTICSEARCH.bulk(cks, search.index_name(r["tenant_id"]))
|
||||
if es_r:
|
||||
set_progress(r["id"], -1, "Index failure!")
|
||||
callback(-1, "Index failure!")
|
||||
cron_logger.error(str(es_r))
|
||||
else:
|
||||
set_progress(r["id"], 1., "Done!")
|
||||
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, chunk_count, timer()-st_tm)
|
||||
DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
||||
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
||||
|
||||
tmf.write(str(r["update_time"]) + "\n")
|
||||
@ -282,5 +235,6 @@ if __name__ == "__main__":
|
||||
peewee_logger.setLevel(database_logger.level)
|
||||
|
||||
from mpi4py import MPI
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
main(comm.Get_size(), comm.Get_rank())
|
||||
Reference in New Issue
Block a user