mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Add Support for AWS Bedrock (#1408)
### What problem does this PR solve? #308 ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: KevinHuSh <kevinhu.sh@gmail.com>
This commit is contained in:
@ -374,3 +374,48 @@ class MistralEmbed(Base):
|
||||
res = self.client.embeddings(input=[truncate(text, 8196)],
|
||||
model=self.model_name)
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
|
||||
|
||||
class BedrockEmbed(Base):
|
||||
def __init__(self, key, model_name,
|
||||
**kwargs):
|
||||
import boto3
|
||||
self.bedrock_ak = eval(key).get('bedrock_ak', '')
|
||||
self.bedrock_sk = eval(key).get('bedrock_sk', '')
|
||||
self.bedrock_region = eval(key).get('bedrock_region', '')
|
||||
self.model_name = model_name
|
||||
self.client = boto3.client(service_name='bedrock-runtime', region_name=self.bedrock_region,
|
||||
aws_access_key_id=self.bedrock_ak, aws_secret_access_key=self.bedrock_sk)
|
||||
|
||||
def encode(self, texts: list, batch_size=32):
|
||||
texts = [truncate(t, 8196) for t in texts]
|
||||
embeddings = []
|
||||
token_count = 0
|
||||
for text in texts:
|
||||
if self.model_name.split('.')[0] == 'amazon':
|
||||
body = {"inputText": text}
|
||||
elif self.model_name.split('.')[0] == 'cohere':
|
||||
body = {"texts": [text], "input_type": 'search_document'}
|
||||
|
||||
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
||||
model_response = json.loads(response["body"].read())
|
||||
embeddings.extend([model_response["embedding"]])
|
||||
token_count += num_tokens_from_string(text)
|
||||
|
||||
return np.array(embeddings), token_count
|
||||
|
||||
def encode_queries(self, text):
|
||||
|
||||
embeddings = []
|
||||
token_count = num_tokens_from_string(text)
|
||||
if self.model_name.split('.')[0] == 'amazon':
|
||||
body = {"inputText": truncate(text, 8196)}
|
||||
elif self.model_name.split('.')[0] == 'cohere':
|
||||
body = {"texts": [truncate(text, 8196)], "input_type": 'search_query'}
|
||||
|
||||
response = self.client.invoke_model(modelId=self.model_name, body=json.dumps(body))
|
||||
model_response = json.loads(response["body"].read())
|
||||
embeddings.extend([model_response["embedding"]])
|
||||
|
||||
return np.array(embeddings), token_count
|
||||
|
||||
|
||||
Reference in New Issue
Block a user