mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
add support for Google Cloud (#2175)
### What problem does this PR solve? #1853 add support for Google Cloud ### Type of change - [x] New Feature (non-breaking change which adds functionality) --------- Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
@ -107,6 +107,7 @@ ChatModel = {
|
||||
"XunFei Spark": SparkChat,
|
||||
"BaiduYiyan": BaiduYiyanChat,
|
||||
"Anthropic": AnthropicChat,
|
||||
"Google Cloud": GoogleChat,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -701,9 +701,13 @@ class GeminiChat(Base):
|
||||
self.model = GenerativeModel(model_name=self.model_name)
|
||||
self.model._client = _client
|
||||
|
||||
|
||||
def chat(self,system,history,gen_conf):
|
||||
from google.generativeai.types import content_types
|
||||
|
||||
if system:
|
||||
history.insert(0, {"role": "user", "parts": system})
|
||||
self.model._system_instruction = content_types.to_content(system)
|
||||
|
||||
if 'max_tokens' in gen_conf:
|
||||
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
|
||||
for k in list(gen_conf.keys()):
|
||||
@ -725,8 +729,10 @@ class GeminiChat(Base):
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
from google.generativeai.types import content_types
|
||||
|
||||
if system:
|
||||
history.insert(0, {"role": "user", "parts": system})
|
||||
self.model._system_instruction = content_types.to_content(system)
|
||||
if 'max_tokens' in gen_conf:
|
||||
gen_conf['max_output_tokens'] = gen_conf['max_tokens']
|
||||
for k in list(gen_conf.keys()):
|
||||
@ -1257,3 +1263,154 @@ class AnthropicChat(Base):
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
|
||||
|
||||
class GoogleChat(Base):
|
||||
def __init__(self, key, model_name, base_url=None):
|
||||
from google.oauth2 import service_account
|
||||
import base64
|
||||
|
||||
key = json.load(key)
|
||||
access_token = json.loads(
|
||||
base64.b64decode(key.get("google_service_account_key", ""))
|
||||
)
|
||||
project_id = key.get("google_project_id", "")
|
||||
region = key.get("google_region", "")
|
||||
|
||||
scopes = ["https://www.googleapis.com/auth/cloud-platform"]
|
||||
self.model_name = model_name
|
||||
self.system = ""
|
||||
|
||||
if "claude" in self.model_name:
|
||||
from anthropic import AnthropicVertex
|
||||
from google.auth.transport.requests import Request
|
||||
|
||||
if access_token:
|
||||
credits = service_account.Credentials.from_service_account_info(
|
||||
access_token, scopes=scopes
|
||||
)
|
||||
request = Request()
|
||||
credits.refresh(request)
|
||||
token = credits.token
|
||||
self.client = AnthropicVertex(
|
||||
region=region, project_id=project_id, access_token=token
|
||||
)
|
||||
else:
|
||||
self.client = AnthropicVertex(region=region, project_id=project_id)
|
||||
else:
|
||||
from google.cloud import aiplatform
|
||||
import vertexai.generative_models as glm
|
||||
|
||||
if access_token:
|
||||
credits = service_account.Credentials.from_service_account_info(
|
||||
access_token
|
||||
)
|
||||
aiplatform.init(
|
||||
credentials=credits, project=project_id, location=region
|
||||
)
|
||||
else:
|
||||
aiplatform.init(project=project_id, location=region)
|
||||
self.client = glm.GenerativeModel(model_name=self.model_name)
|
||||
|
||||
def chat(self, system, history, gen_conf):
|
||||
if system:
|
||||
self.system = system
|
||||
|
||||
if "claude" in self.model_name:
|
||||
if "max_tokens" not in gen_conf:
|
||||
gen_conf["max_tokens"] = 4096
|
||||
try:
|
||||
response = self.client.messages.create(
|
||||
model=self.model_name,
|
||||
messages=history,
|
||||
system=self.system,
|
||||
stream=False,
|
||||
**gen_conf,
|
||||
).json()
|
||||
ans = response["content"][0]["text"]
|
||||
if response["stop_reason"] == "max_tokens":
|
||||
ans += (
|
||||
"...\nFor the content length reason, it stopped, continue?"
|
||||
if is_english([ans])
|
||||
else "······\n由于长度的原因,回答被截断了,要继续吗?"
|
||||
)
|
||||
return (
|
||||
ans,
|
||||
response["usage"]["input_tokens"]
|
||||
+ response["usage"]["output_tokens"],
|
||||
)
|
||||
except Exception as e:
|
||||
return ans + "\n**ERROR**: " + str(e), 0
|
||||
else:
|
||||
self.client._system_instruction = self.system
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
||||
del gen_conf[k]
|
||||
for item in history:
|
||||
if "role" in item and item["role"] == "assistant":
|
||||
item["role"] = "model"
|
||||
if "content" in item:
|
||||
item["parts"] = item.pop("content")
|
||||
try:
|
||||
response = self.client.generate_content(
|
||||
history, generation_config=gen_conf
|
||||
)
|
||||
ans = response.text
|
||||
return ans, response.usage_metadata.total_token_count
|
||||
except Exception as e:
|
||||
return "**ERROR**: " + str(e), 0
|
||||
|
||||
def chat_streamly(self, system, history, gen_conf):
|
||||
if system:
|
||||
self.system = system
|
||||
|
||||
if "claude" in self.model_name:
|
||||
if "max_tokens" not in gen_conf:
|
||||
gen_conf["max_tokens"] = 4096
|
||||
ans = ""
|
||||
total_tokens = 0
|
||||
try:
|
||||
response = self.client.messages.create(
|
||||
model=self.model_name,
|
||||
messages=history,
|
||||
system=self.system,
|
||||
stream=True,
|
||||
**gen_conf,
|
||||
)
|
||||
for res in response.iter_lines():
|
||||
res = res.decode("utf-8")
|
||||
if "content_block_delta" in res and "data" in res:
|
||||
text = json.loads(res[6:])["delta"]["text"]
|
||||
ans += text
|
||||
total_tokens += num_tokens_from_string(text)
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield total_tokens
|
||||
else:
|
||||
self.client._system_instruction = self.system
|
||||
if "max_tokens" in gen_conf:
|
||||
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
|
||||
for k in list(gen_conf.keys()):
|
||||
if k not in ["temperature", "top_p", "max_output_tokens"]:
|
||||
del gen_conf[k]
|
||||
for item in history:
|
||||
if "role" in item and item["role"] == "assistant":
|
||||
item["role"] = "model"
|
||||
if "content" in item:
|
||||
item["parts"] = item.pop("content")
|
||||
ans = ""
|
||||
try:
|
||||
response = self.model.generate_content(
|
||||
history, generation_config=gen_conf, stream=True
|
||||
)
|
||||
for resp in response:
|
||||
ans += resp.text
|
||||
yield ans
|
||||
|
||||
except Exception as e:
|
||||
yield ans + "\n**ERROR**: " + str(e)
|
||||
|
||||
yield response._chunks[-1].usage_metadata.total_token_count
|
||||
|
||||
Reference in New Issue
Block a user