mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
Docs: Removed /v1 from Ollama base URLs (#10067)
### What problem does this PR solve? ### Type of change - [x] Documentation Update
This commit is contained in:
@ -106,7 +106,7 @@ RAGFlow offers HTTP and Python APIs for you to integrate RAGFlow's capabilities
|
||||
|
||||
You can use iframe to embed the created chat assistant into a third-party webpage:
|
||||
|
||||
1. Before proceeding, you must [acquire an API key](../models/llm_api_key_setup.md); otherwise, an error message would appear.
|
||||
1. Before proceeding, you must [acquire an API key](../../develop/acquire_ragflow_api_key.md); otherwise, an error message would appear.
|
||||
2. Hover over an intended chat assistant **>** **Edit** to show the **iframe** window:
|
||||
|
||||

|
||||
|
||||
@ -91,7 +91,7 @@ In RAGFlow, click on your logo on the top right of the page **>** **Model provid
|
||||
In the popup window, complete basic settings for Ollama:
|
||||
|
||||
1. Ensure that your model name and type match those been pulled at step 1 (Deploy Ollama using Docker). For example, (`llama3.2` and `chat`) or (`bge-m3` and `embedding`).
|
||||
2. In Ollama base URL, put the URL you found in step 2 followed by `/v1`, i.e. `http://host.docker.internal:11434/v1`, `http://localhost:11434/v1` or `http://${IP_OF_OLLAMA_MACHINE}:11434/v1`.
|
||||
2. Put in the Ollama base URL, i.e. `http://host.docker.internal:11434`, `http://localhost:11434` or `http://${IP_OF_OLLAMA_MACHINE}:11434`.
|
||||
3. OPTIONAL: Switch on the toggle under **Does it support Vision?** if your model includes an image-to-text model.
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user