Chat Use CVmodel (#1607)

### What problem does this PR solve?

#1230 

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
H
2024-07-19 18:36:34 +08:00
committed by GitHub
parent 347cb61f26
commit 58df013722
4 changed files with 325 additions and 6 deletions

View File

@ -26,6 +26,7 @@ from io import BytesIO
import json
import requests
from rag.nlp import is_english
from api.utils import get_uuid
from api.utils.file_utils import get_project_base_directory
@ -36,7 +37,60 @@ class Base(ABC):
def describe(self, image, max_tokens=300):
raise NotImplementedError("Please implement encode method!")
def chat(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
try:
for his in history:
if his["role"] == "user":
his["content"] = self.chat_prompt(his["content"], image)
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
max_tokens=gen_conf.get("max_tokens", 1000),
temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7)
)
return response.choices[0].message.content.strip(), response.usage.total_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
ans = ""
tk_count = 0
try:
for his in history:
if his["role"] == "user":
his["content"] = self.chat_prompt(his["content"], image)
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
max_tokens=gen_conf.get("max_tokens", 1000),
temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7),
stream=True
)
for resp in response:
if not resp.choices[0].delta.content: continue
delta = resp.choices[0].delta.content
ans += delta
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
tk_count = resp.usage.total_tokens
if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
def image2base64(self, image):
if isinstance(image, bytes):
return base64.b64encode(image).decode("utf-8")
@ -68,6 +122,21 @@ class Base(ABC):
}
]
def chat_prompt(self, text, b64):
return [
{
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{b64}",
},
},
{
"type": "text",
"text": text
},
]
class GptV4(Base):
def __init__(self, key, model_name="gpt-4-vision-preview", lang="Chinese", base_url="https://api.openai.com/v1"):
@ -140,6 +209,12 @@ class QWenCV(Base):
}
]
def chat_prompt(self, text, b64):
return [
{"image": f"{b64}"},
{"text": text},
]
def describe(self, image, max_tokens=300):
from http import HTTPStatus
from dashscope import MultiModalConversation
@ -149,6 +224,66 @@ class QWenCV(Base):
return response.output.choices[0]['message']['content'][0]["text"], response.usage.output_tokens
return response.message, 0
def chat(self, system, history, gen_conf, image=""):
from http import HTTPStatus
from dashscope import MultiModalConversation
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
for his in history:
if his["role"] == "user":
his["content"] = self.chat_prompt(his["content"], image)
response = MultiModalConversation.call(model=self.model_name, messages=history,
max_tokens=gen_conf.get("max_tokens", 1000),
temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7))
ans = ""
tk_count = 0
if response.status_code == HTTPStatus.OK:
ans += response.output.choices[0]['message']['content']
tk_count += response.usage.total_tokens
if response.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
return ans, tk_count
return "**ERROR**: " + response.message, tk_count
def chat_streamly(self, system, history, gen_conf, image=""):
from http import HTTPStatus
from dashscope import MultiModalConversation
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
for his in history:
if his["role"] == "user":
his["content"] = self.chat_prompt(his["content"], image)
ans = ""
tk_count = 0
try:
response = MultiModalConversation.call(model=self.model_name, messages=history,
max_tokens=gen_conf.get("max_tokens", 1000),
temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7),
stream=True)
for resp in response:
if resp.status_code == HTTPStatus.OK:
ans = resp.output.choices[0]['message']['content']
tk_count = resp.usage.total_tokens
if resp.output.choices[0].get("finish_reason", "") == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
yield ans
else:
yield ans + "\n**ERROR**: " + resp.message if str(resp.message).find(
"Access") < 0 else "Out of credit. Please set the API key in **settings > Model providers.**"
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class Zhipu4V(Base):
def __init__(self, key, model_name="glm-4v", lang="Chinese", **kwargs):
@ -166,6 +301,59 @@ class Zhipu4V(Base):
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
def chat(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
try:
for his in history:
if his["role"] == "user":
his["content"] = self.chat_prompt(his["content"], image)
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
max_tokens=gen_conf.get("max_tokens", 1000),
temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7)
)
return response.choices[0].message.content.strip(), response.usage.total_tokens
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
ans = ""
tk_count = 0
try:
for his in history:
if his["role"] == "user":
his["content"] = self.chat_prompt(his["content"], image)
response = self.client.chat.completions.create(
model=self.model_name,
messages=history,
max_tokens=gen_conf.get("max_tokens", 1000),
temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7),
stream=True
)
for resp in response:
if not resp.choices[0].delta.content: continue
delta = resp.choices[0].delta.content
ans += delta
if resp.choices[0].finish_reason == "length":
ans += "...\nFor the content length reason, it stopped, continue?" if is_english(
[ans]) else "······\n由于长度的原因,回答被截断了,要继续吗?"
tk_count = resp.usage.total_tokens
if resp.choices[0].finish_reason == "stop": tk_count = resp.usage.total_tokens
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield tk_count
class OllamaCV(Base):
def __init__(self, key, model_name, lang="Chinese", **kwargs):
@ -188,6 +376,63 @@ class OllamaCV(Base):
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
try:
for his in history:
if his["role"] == "user":
his["images"] = [image]
options = {}
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
response = self.client.chat(
model=self.model_name,
messages=history,
options=options,
keep_alive=-1
)
ans = response["message"]["content"].strip()
return ans, response["eval_count"] + response.get("prompt_eval_count", 0)
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
for his in history:
if his["role"] == "user":
his["images"] = [image]
options = {}
if "temperature" in gen_conf: options["temperature"] = gen_conf["temperature"]
if "max_tokens" in gen_conf: options["num_predict"] = gen_conf["max_tokens"]
if "top_p" in gen_conf: options["top_k"] = gen_conf["top_p"]
if "presence_penalty" in gen_conf: options["presence_penalty"] = gen_conf["presence_penalty"]
if "frequency_penalty" in gen_conf: options["frequency_penalty"] = gen_conf["frequency_penalty"]
ans = ""
try:
response = self.client.chat(
model=self.model_name,
messages=history,
stream=True,
options=options,
keep_alive=-1
)
for resp in response:
if resp["done"]:
yield resp.get("prompt_eval_count", 0) + resp.get("eval_count", 0)
ans += resp["message"]["content"]
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield 0
class LocalAICV(Base):
def __init__(self, key, model_name, base_url, lang="Chinese"):
@ -236,7 +481,7 @@ class XinferenceCV(Base):
class GeminiCV(Base):
def __init__(self, key, model_name="gemini-1.0-pro-vision-latest", lang="Chinese", **kwargs):
from google.generativeai import client,GenerativeModel
from google.generativeai import client, GenerativeModel, GenerationConfig
client.configure(api_key=key)
_client = client.get_default_generative_client()
self.model_name = model_name
@ -258,6 +503,59 @@ class GeminiCV(Base):
)
return res.text,res.usage_metadata.total_token_count
def chat(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
try:
for his in history:
if his["role"] == "assistant":
his["role"] = "model"
his["parts"] = [his["content"]]
his.pop("content")
if his["role"] == "user":
his["parts"] = [his["content"]]
his.pop("content")
history[-1]["parts"].append(f"data:image/jpeg;base64," + image)
response = self.model.generate_content(history, generation_config=GenerationConfig(
max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7)))
ans = response.text
return ans, response.usage_metadata.total_token_count
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf, image=""):
if system:
history[-1]["content"] = system + history[-1]["content"] + "user query: " + history[-1]["content"]
ans = ""
tk_count = 0
try:
for his in history:
if his["role"] == "assistant":
his["role"] = "model"
his["parts"] = [his["content"]]
his.pop("content")
if his["role"] == "user":
his["parts"] = [his["content"]]
his.pop("content")
history[-1]["parts"].append(f"data:image/jpeg;base64," + image)
response = self.model.generate_content(history, generation_config=GenerationConfig(
max_output_tokens=gen_conf.get("max_tokens", 1000), temperature=gen_conf.get("temperature", 0.3),
top_p=gen_conf.get("top_p", 0.7)), stream=True)
for resp in response:
if not resp.text: continue
ans += resp.text
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield response._chunks[-1].usage_metadata.total_token_count
class OpenRouterCV(Base):
def __init__(