mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Chat Use CVmodel (#1607)
### What problem does this PR solve? #1230 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
@ -13,6 +13,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import os
|
||||
import json
|
||||
import re
|
||||
from copy import deepcopy
|
||||
|
||||
@ -26,6 +28,7 @@ from rag.app.resume import forbidden_select_fields4resume
|
||||
from rag.nlp import keyword_extraction
|
||||
from rag.nlp.search import index_name
|
||||
from rag.utils import rmSpace, num_tokens_from_string, encoder
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
|
||||
|
||||
class DialogService(CommonService):
|
||||
@ -73,6 +76,15 @@ def message_fit_in(msg, max_length=4000):
|
||||
return max_length, msg
|
||||
|
||||
|
||||
def llm_id2llm_type(llm_id):
|
||||
fnm = os.path.join(get_project_base_directory(), "conf")
|
||||
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
|
||||
for llm_factory in llm_factories["factory_llm_infos"]:
|
||||
for llm in llm_factory["llm"]:
|
||||
if llm_id == llm["llm_name"]:
|
||||
return llm["model_type"].strip(",")[-1]
|
||||
|
||||
|
||||
def chat(dialog, messages, stream=True, **kwargs):
|
||||
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
||||
llm = LLMService.query(llm_name=dialog.llm_id)
|
||||
@ -91,7 +103,10 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
|
||||
questions = [m["content"] for m in messages if m["role"] == "user"]
|
||||
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
||||
if llm_id2llm_type(dialog.llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.IMAGE2TEXT, dialog.llm_id)
|
||||
else:
|
||||
chat_mdl = LLMBundle(dialog.tenant_id, LLMType.CHAT, dialog.llm_id)
|
||||
|
||||
prompt_config = dialog.prompt_config
|
||||
field_map = KnowledgebaseService.get_field_map(dialog.kb_ids)
|
||||
@ -328,7 +343,10 @@ def use_sql(question, field_map, tenant_id, chat_mdl, quota=True):
|
||||
|
||||
|
||||
def relevant(tenant_id, llm_id, question, contents: list):
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
||||
if llm_id2llm_type(llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
|
||||
else:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
||||
prompt = """
|
||||
You are a grader assessing relevance of a retrieved document to a user question.
|
||||
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
|
||||
@ -347,7 +365,10 @@ def relevant(tenant_id, llm_id, question, contents: list):
|
||||
|
||||
|
||||
def rewrite(tenant_id, llm_id, question):
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
||||
if llm_id2llm_type(llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
|
||||
else:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
||||
prompt = """
|
||||
You are an expert at query expansion to generate a paraphrasing of a question.
|
||||
I can't retrieval relevant information from the knowledge base by using user's question directly.
|
||||
|
||||
Reference in New Issue
Block a user