Feat: Add question parameter to edit chunk modal (#3875)

### What problem does this PR solve?

Close #3873

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2024-12-05 14:51:19 +08:00
committed by GitHub
parent b502dc7399
commit 56f473b680
8 changed files with 55 additions and 24 deletions

View File

@ -31,6 +31,7 @@ class FulltextQueryer:
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"question_tks^20",
"content_ltks^2",
"content_sm_ltks",
]

View File

@ -74,7 +74,7 @@ class Dealer:
offset, limit = pg * ps, (pg + 1) * ps
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id", "title_tks", "important_kwd",
"doc_id", "position_list", "knowledge_graph_kwd",
"doc_id", "position_list", "knowledge_graph_kwd", "question_kwd", "question_tks",
"available_int", "content_with_weight", "pagerank_fea"])
kwds = set([])
@ -251,8 +251,9 @@ class Dealer:
for i in sres.ids:
content_ltks = sres.field[i][cfield].split()
title_tks = [t for t in sres.field[i].get("title_tks", "").split() if t]
question_tks = [t for t in sres.field[i].get("question_tks", "").split() if t]
important_kwd = sres.field[i].get("important_kwd", [])
tks = content_ltks + title_tks*2 + important_kwd*5
tks = content_ltks + title_tks*2 + important_kwd*5 + question_tks*6
ins_tw.append(tks)
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
@ -322,11 +323,14 @@ class Dealer:
sim = tsim = vsim = [1]*len(sres.ids)
idx = list(range(len(sres.ids)))
def floor_sim(score):
return (int(score * 100.)%100)/100.
dim = len(sres.query_vector)
vector_column = f"q_{dim}_vec"
zero_vector = [0.0] * dim
for i in idx:
if sim[i] < similarity_threshold:
if floor_sim(sim[i]) < similarity_threshold:
break
if len(ranks["chunks"]) >= page_size:
if aggs:
@ -337,8 +341,6 @@ class Dealer:
dnm = chunk["docnm_kwd"]
did = chunk["doc_id"]
position_list = chunk.get("position_list", "[]")
if not position_list:
position_list = "[]"
d = {
"chunk_id": id,
"content_ltks": chunk["content_ltks"],

View File

@ -255,13 +255,8 @@ def build_chunks(task, progress_callback):
progress_callback(msg="Start to generate questions for every chunk ...")
chat_mdl = LLMBundle(task["tenant_id"], LLMType.CHAT, llm_name=task["llm_id"], lang=task["language"])
for d in docs:
qst = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"])
d["content_with_weight"] = f"Question: \n{qst}\n\nAnswer:\n" + d["content_with_weight"]
qst = rag_tokenizer.tokenize(qst)
if "content_ltks" in d:
d["content_ltks"] += " " + qst
if "content_sm_ltks" in d:
d["content_sm_ltks"] += " " + rag_tokenizer.fine_grained_tokenize(qst)
d["question_kwd"] = question_proposal(chat_mdl, d["content_with_weight"], task["parser_config"]["auto_questions"]).split("\n")
d["question_tks"] = rag_tokenizer.tokenize("\n".join(d["question_kwd"]))
progress_callback(msg="Question generation completed in {:.2f}s".format(timer() - st))
return docs
@ -275,9 +270,16 @@ def init_kb(row, vector_size: int):
def embedding(docs, mdl, parser_config=None, callback=None):
if parser_config is None:
parser_config = {}
batch_size = 32
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [
re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", d["content_with_weight"]) for d in docs]
batch_size = 16
tts, cnts = [], []
for d in docs:
tts.append(rmSpace(d["title_tks"]))
c = "\n".join(d.get("question_kwd", []))
if not c:
c = d["content_with_weight"]
c = re.sub(r"</?(table|td|caption|tr|th)( [^<>]{0,12})?>", " ", c)
cnts.append(c)
tk_count = 0
if len(tts) == len(cnts):
tts_ = np.array([])