Add tavily as web searh tool. (#5349)

### What problem does this PR solve?

#5198

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2025-02-26 10:21:04 +08:00
committed by GitHub
parent e5e9ca0015
commit 53b9e7b52f
6 changed files with 3248 additions and 3080 deletions

View File

@ -206,6 +206,8 @@ class FulltextQueryer:
sims = CosineSimilarity([avec], bvecs)
tksim = self.token_similarity(atks, btkss)
if np.sum(sims[0]) == 0:
return np.array(tksim), tksim, sims[0]
return np.array(sims[0]) * vtweight + np.array(tksim) * tkweight, tksim, sims[0]
def token_similarity(self, atks, btkss):

66
rag/utils/tavily_conn.py Normal file
View File

@ -0,0 +1,66 @@
#
# Copyright 2025 The InfiniFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import logging
from tavily import TavilyClient
from api.utils import get_uuid
from rag.nlp import rag_tokenizer
class Tavily:
def __init__(self, api_key: str):
self.tavily_client = TavilyClient(api_key=api_key)
def search(self, query):
try:
response = self.tavily_client.search(
query=query,
search_depth="advanced"
)
return [{"url": res["url"], "title": res["title"], "content": res["content"], "score": res["score"]} for res in response["results"]]
except Exception as e:
logging.exception(e)
return []
def retrieve_chunks(self, question):
chunks = []
aggs = []
for r in self.search(question):
id = get_uuid()
chunks.append({
"chunk_id": id,
"content_ltks": rag_tokenizer.tokenize(r["content"]),
"content_with_weight": r["content"],
"doc_id": id,
"docnm_kwd": r["title"],
"kb_id": [],
"important_kwd": [],
"image_id": "",
"similarity": r["score"],
"vector_similarity": 1.,
"term_similarity": 0,
"vector": [],
"positions": [],
"url": r["url"]
})
aggs.append({
"doc_name": r["title"],
"doc_id": id,
"count": 1,
"url": r["url"]
})
logging.info("[Tavily]: "+r["content"][:128]+"...")
return {"chunks": chunks, "doc_aggs": aggs}