Fix: Solve the OOM issue when passing large PDF files while using QA chunking method. (#8464)

### What problem does this PR solve?

Using the QA chunking method with a large PDF (e.g., 300+ pages) may
lead to OOM in the ragflow-worker module.


### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
liuzhenghua
2025-06-25 10:25:45 +08:00
committed by GitHub
parent f21827bc28
commit 5256980ffb

View File

@ -310,7 +310,7 @@ def mdQuestionLevel(s):
return (len(match.group(0)), s.lstrip('#').lstrip()) if match else (0, s)
def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
def chunk(filename, binary=None, from_page=0, to_page=100000, lang="Chinese", callback=None, **kwargs):
"""
Excel and csv(txt) format files are supported.
If the file is in excel format, there should be 2 column question and answer without header.
@ -410,7 +410,7 @@ def chunk(filename, binary=None, lang="Chinese", callback=None, **kwargs):
callback(0.1, "Start to parse.")
pdf_parser = Pdf()
qai_list, tbls = pdf_parser(filename if not binary else binary,
from_page=0, to_page=10000, callback=callback)
from_page=from_page, to_page=to_page, callback=callback)
for q, a, image, poss in qai_list:
res.append(beAdocPdf(deepcopy(doc), q, a, eng, image, poss))
return res