Some document API refined. (#53)

Add naive chunking method to RAG
This commit is contained in:
KevinHuSh
2024-02-02 19:21:37 +08:00
committed by GitHub
parent 7b71fb2db6
commit 51482f3e2a
13 changed files with 447 additions and 268 deletions

View File

@ -650,6 +650,41 @@ class HuParser:
i += 1
self.boxes = bxs
def _naive_vertical_merge(self):
bxs = self.sort_Y_firstly(self.boxes, np.median(self.mean_height) / 3)
i = 0
while i + 1 < len(bxs):
b = bxs[i]
b_ = bxs[i + 1]
if b["page_number"] < b_["page_number"] and re.match(r"[0-9 •一—-]+$", b["text"]):
bxs.pop(i)
continue
concatting_feats = [
b["text"].strip()[-1] in ",;:'\",、‘“;:-",
len(b["text"].strip()) > 1 and b["text"].strip()[-2] in ",;:'\",‘“、;:",
b["text"].strip()[0] in "。;?!?”)),,、:",
]
# features for not concating
feats = [
b.get("layoutno", 0) != b.get("layoutno", 0),
b["text"].strip()[-1] in "。?!?",
self.is_english and b["text"].strip()[-1] in ".!?",
b["page_number"] == b_["page_number"] and b_["top"] - \
b["bottom"] > self.mean_height[b["page_number"] - 1] * 1.5,
b["page_number"] < b_["page_number"] and abs(
b["x0"] - b_["x0"]) > self.mean_width[b["page_number"] - 1] * 4
]
if any(feats) and not any(concatting_feats):
i += 1
continue
# merge up and down
b["bottom"] = b_["bottom"]
b["text"] += b_["text"]
b["x0"] = min(b["x0"], b_["x0"])
b["x1"] = max(b["x1"], b_["x1"])
bxs.pop(i + 1)
self.boxes = bxs
def _concat_downward(self, concat_between_pages=True):
# count boxes in the same row as a feature
for i in range(len(self.boxes)):
@ -761,11 +796,13 @@ class HuParser:
def _filter_forpages(self):
if not self.boxes:
return
findit = False
i = 0
while i < len(self.boxes):
if not re.match(r"(contents|目录|目次|table of contents|致谢|acknowledge)$", re.sub(r"( | |\u3000)+", "", self.boxes[i]["text"].lower())):
i += 1
continue
findit = True
eng = re.match(r"[0-9a-zA-Z :'.-]{5,}", self.boxes[i]["text"].strip())
self.boxes.pop(i)
if i >= len(self.boxes): break
@ -781,14 +818,36 @@ class HuParser:
continue
for k in range(i, j): self.boxes.pop(i)
break
if findit:return
page_dirty = [0] * len(self.page_images)
for b in self.boxes:
if re.search(r"(··|··|··)", b["text"]):
page_dirty[b["page_number"]-1] += 1
page_dirty = set([i+1 for i, t in enumerate(page_dirty) if t > 3])
if not page_dirty: return
i = 0
while i < len(self.boxes):
if self.boxes[i]["page_number"] in page_dirty:
self.boxes.pop(i)
continue
i += 1
def _merge_with_same_bullet(self):
i = 0
while i + 1 < len(self.boxes):
b = self.boxes[i]
b_ = self.boxes[i + 1]
if not b["text"].strip():
self.boxes.pop(i)
continue
if not b_["text"].strip():
self.boxes.pop(i+1)
continue
if b["text"].strip()[0] != b_["text"].strip()[0] \
or b["text"].strip()[0].lower() in set("qwertyuopasdfghjklzxcvbnm") \
or huqie.is_chinese(b["text"].strip()[0]) \
or b["top"] > b_["bottom"]:
i += 1
continue
@ -1596,8 +1655,7 @@ class HuParser:
self.pdf = pdfplumber.open(fnm) if isinstance(fnm, str) else pdfplumber.open(BytesIO(fnm))
self.page_images = [p.to_image(resolution=72 * zoomin).annotated for i, p in
enumerate(self.pdf.pages[page_from:page_to])]
self.page_chars = [[c for c in self.pdf.pages[i].chars if self._has_color(c)] for i in
range(len(self.page_images))]
self.page_chars = [[c for c in page.chars if self._has_color(c)] for page in self.pdf.pages[page_from:page_to]]
self.total_page = len(self.pdf.pages)
except Exception as e:
self.pdf = fitz.open(fnm) if isinstance(fnm, str) else fitz.open(stream=fnm, filetype="pdf")
@ -1605,15 +1663,17 @@ class HuParser:
self.page_chars = []
mat = fitz.Matrix(zoomin, zoomin)
self.total_page = len(self.pdf)
for page in self.pdf[page_from:page_to]:
pix = page.getPixmap(matrix=mat)
for i, page in enumerate(self.pdf):
if i < page_from:continue
if i >= page_to:break
pix = page.get_pixmap(matrix=mat)
img = Image.frombytes("RGB", [pix.width, pix.height],
pix.samples)
self.page_images.append(img)
self.page_chars.append([])
logging.info("Images converted.")
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=100))) for i in range(len(self.page_chars))]
self.is_english = [re.search(r"[a-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join(random.choices([c["text"] for c in self.page_chars[i]], k=min(100, len(self.page_chars[i]))))) for i in range(len(self.page_chars))]
if sum([1 if e else 0 for e in self.is_english]) > len(self.page_images) / 2:
self.is_english = True
else:
@ -1644,8 +1704,8 @@ class HuParser:
# np.max([c["bottom"] for c in chars]))
self.__ocr_paddle(i + 1, img, chars, zoomin)
if not self.is_english and not all([c for c in self.page_chars]) and self.boxes:
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(self.boxes, k=30)]))
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices([b for bxs in self.boxes for b in bxs], k=30)]))
logging.info("Is it English:", self.is_english)