Fix problem with Google Cloud models with reasoning (like gemini) - Additional fix to issue #10474 (#10502)

### What problem does this PR solve?

Issue #10474  -  Update to PR #10477 

### Type of change

- [X] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
Günter Lukas
2025-10-15 08:54:20 +02:00
committed by GitHub
parent fdac4afd10
commit 5037a28e4d
3 changed files with 151 additions and 98 deletions

View File

@ -1165,15 +1165,13 @@ class GoogleChat(Base):
else:
self.client = AnthropicVertex(region=region, project_id=project_id)
else:
import vertexai.generative_models as glm
from google.cloud import aiplatform
from google import genai
if access_token:
credits = service_account.Credentials.from_service_account_info(access_token)
aiplatform.init(credentials=credits, project=project_id, location=region)
credits = service_account.Credentials.from_service_account_info(access_token, scopes=scopes)
self.client = genai.Client(vertexai=True, project=project_id, location=region, credentials=credits)
else:
aiplatform.init(project=project_id, location=region)
self.client = glm.GenerativeModel(model_name=self.model_name)
self.client = genai.Client(vertexai=True, project=project_id, location=region)
def _clean_conf(self, gen_conf):
if "claude" in self.model_name:
@ -1188,38 +1186,11 @@ class GoogleChat(Base):
del gen_conf[k]
return gen_conf
def _get_thinking_config(self, gen_conf):
"""Extract and create ThinkingConfig from gen_conf.
Default behavior for Vertex AI Generative Models: thinking_budget=0 (disabled)
unless explicitly specified by the user. This does not apply to Claude models.
Users can override by setting thinking_budget in gen_conf/llm_setting:
- 0: Disabled (default)
- 1-24576: Manual budget
- -1: Auto (model decides)
"""
# Claude models don't support ThinkingConfig
if "claude" in self.model_name:
gen_conf.pop("thinking_budget", None)
return None
# For Vertex AI Generative Models, default to thinking disabled
thinking_budget = gen_conf.pop("thinking_budget", 0)
if thinking_budget is not None:
try:
import vertexai.generative_models as glm # type: ignore
return glm.ThinkingConfig(thinking_budget=thinking_budget)
except Exception:
pass
return None
def _chat(self, history, gen_conf={}, **kwargs):
system = history[0]["content"] if history and history[0]["role"] == "system" else ""
thinking_config = self._get_thinking_config(gen_conf)
gen_conf = self._clean_conf(gen_conf)
if "claude" in self.model_name:
gen_conf = self._clean_conf(gen_conf)
response = self.client.messages.create(
model=self.model_name,
messages=[h for h in history if h["role"] != "system"],
@ -1235,28 +1206,63 @@ class GoogleChat(Base):
response["usage"]["input_tokens"] + response["usage"]["output_tokens"],
)
self.client._system_instruction = system
hist = []
# Gemini models with google-genai SDK
# Set default thinking_budget=0 if not specified
if "thinking_budget" not in gen_conf:
gen_conf["thinking_budget"] = 0
thinking_budget = gen_conf.pop("thinking_budget", 0)
gen_conf = self._clean_conf(gen_conf)
# Build GenerateContentConfig
try:
from google.genai.types import GenerateContentConfig, ThinkingConfig, Content, Part
except ImportError as e:
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
raise
config_dict = {}
if system:
config_dict["system_instruction"] = system
if "temperature" in gen_conf:
config_dict["temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
config_dict["top_p"] = gen_conf["top_p"]
if "max_output_tokens" in gen_conf:
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
# Add ThinkingConfig
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
config = GenerateContentConfig(**config_dict)
# Convert history to google-genai Content format
contents = []
for item in history:
if item["role"] == "system":
continue
hist.append(deepcopy(item))
item = hist[-1]
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = [
{
"text": item.pop("content"),
}
]
# google-genai uses 'model' instead of 'assistant'
role = "model" if item["role"] == "assistant" else item["role"]
content = Content(
role=role,
parts=[Part(text=item["content"])]
)
contents.append(content)
response = self.client.models.generate_content(
model=self.model_name,
contents=contents,
config=config
)
if thinking_config:
response = self.client.generate_content(hist, generation_config=gen_conf, thinking_config=thinking_config)
else:
response = self.client.generate_content(hist, generation_config=gen_conf)
ans = response.text
return ans, response.usage_metadata.total_token_count
# Get token count from response
try:
total_tokens = response.usage_metadata.total_token_count
except Exception:
total_tokens = 0
return ans, total_tokens
def chat_streamly(self, system, history, gen_conf={}, **kwargs):
if "claude" in self.model_name:
@ -1283,34 +1289,59 @@ class GoogleChat(Base):
yield total_tokens
else:
response = None
total_tokens = 0
self.client._system_instruction = system
thinking_config = self._get_thinking_config(gen_conf)
if "max_tokens" in gen_conf:
gen_conf["max_output_tokens"] = gen_conf["max_tokens"]
del gen_conf["max_tokens"]
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_output_tokens"]:
del gen_conf[k]
for item in history:
if "role" in item and item["role"] == "assistant":
item["role"] = "model"
if "content" in item:
item["parts"] = [
{
"text": item.pop("content"),
}
]
# Gemini models with google-genai SDK
ans = ""
total_tokens = 0
# Set default thinking_budget=0 if not specified
if "thinking_budget" not in gen_conf:
gen_conf["thinking_budget"] = 0
thinking_budget = gen_conf.pop("thinking_budget", 0)
gen_conf = self._clean_conf(gen_conf)
# Build GenerateContentConfig
try:
if thinking_config:
response = self.client.generate_content(history, generation_config=gen_conf, thinking_config=thinking_config, stream=True)
else:
response = self.client.generate_content(history, generation_config=gen_conf, stream=True)
for resp in response:
ans = resp.text
total_tokens += num_tokens_from_string(ans)
from google.genai.types import GenerateContentConfig, ThinkingConfig, Content, Part
except ImportError as e:
logging.error(f"[GoogleChat] Failed to import google-genai: {e}. Please install: pip install google-genai>=1.41.0")
raise
config_dict = {}
if system:
config_dict["system_instruction"] = system
if "temperature" in gen_conf:
config_dict["temperature"] = gen_conf["temperature"]
if "top_p" in gen_conf:
config_dict["top_p"] = gen_conf["top_p"]
if "max_output_tokens" in gen_conf:
config_dict["max_output_tokens"] = gen_conf["max_output_tokens"]
# Add ThinkingConfig
config_dict["thinking_config"] = ThinkingConfig(thinking_budget=thinking_budget)
config = GenerateContentConfig(**config_dict)
# Convert history to google-genai Content format
contents = []
for item in history:
# google-genai uses 'model' instead of 'assistant'
role = "model" if item["role"] == "assistant" else item["role"]
content = Content(
role=role,
parts=[Part(text=item["content"])]
)
contents.append(content)
try:
for chunk in self.client.models.generate_content_stream(
model=self.model_name,
contents=contents,
config=config
):
text = chunk.text
ans = text
total_tokens += num_tokens_from_string(text)
yield ans
except Exception as e: