mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Code refactor (#5371)
### What problem does this PR solve? #5173 ### Type of change - [x] Refactoring
This commit is contained in:
297
rag/prompts.py
Normal file
297
rag/prompts.py
Normal file
@ -0,0 +1,297 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import datetime
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
from collections import defaultdict
|
||||
import json_repair
|
||||
from api.db import LLMType
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.llm_service import TenantLLMService, LLMBundle
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from rag.settings import TAG_FLD
|
||||
from rag.utils import num_tokens_from_string, encoder
|
||||
|
||||
|
||||
def llm_id2llm_type(llm_id):
|
||||
llm_id, _ = TenantLLMService.split_model_name_and_factory(llm_id)
|
||||
fnm = os.path.join(get_project_base_directory(), "conf")
|
||||
llm_factories = json.load(open(os.path.join(fnm, "llm_factories.json"), "r"))
|
||||
for llm_factory in llm_factories["factory_llm_infos"]:
|
||||
for llm in llm_factory["llm"]:
|
||||
if llm_id == llm["llm_name"]:
|
||||
return llm["model_type"].strip(",")[-1]
|
||||
|
||||
|
||||
def message_fit_in(msg, max_length=4000):
|
||||
def count():
|
||||
nonlocal msg
|
||||
tks_cnts = []
|
||||
for m in msg:
|
||||
tks_cnts.append(
|
||||
{"role": m["role"], "count": num_tokens_from_string(m["content"])})
|
||||
total = 0
|
||||
for m in tks_cnts:
|
||||
total += m["count"]
|
||||
return total
|
||||
|
||||
c = count()
|
||||
if c < max_length:
|
||||
return c, msg
|
||||
|
||||
msg_ = [m for m in msg[:-1] if m["role"] == "system"]
|
||||
if len(msg) > 1:
|
||||
msg_.append(msg[-1])
|
||||
msg = msg_
|
||||
c = count()
|
||||
if c < max_length:
|
||||
return c, msg
|
||||
|
||||
ll = num_tokens_from_string(msg_[0]["content"])
|
||||
ll2 = num_tokens_from_string(msg_[-1]["content"])
|
||||
if ll / (ll + ll2) > 0.8:
|
||||
m = msg_[0]["content"]
|
||||
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
|
||||
msg[0]["content"] = m
|
||||
return max_length, msg
|
||||
|
||||
m = msg_[1]["content"]
|
||||
m = encoder.decode(encoder.encode(m)[:max_length - ll2])
|
||||
msg[1]["content"] = m
|
||||
return max_length, msg
|
||||
|
||||
|
||||
def kb_prompt(kbinfos, max_tokens):
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
used_token_count = 0
|
||||
chunks_num = 0
|
||||
for i, c in enumerate(knowledges):
|
||||
used_token_count += num_tokens_from_string(c)
|
||||
chunks_num += 1
|
||||
if max_tokens * 0.97 < used_token_count:
|
||||
knowledges = knowledges[:i]
|
||||
logging.warning(f"Not all the retrieval into prompt: {i+1}/{len(knowledges)}")
|
||||
break
|
||||
|
||||
docs = DocumentService.get_by_ids([ck["doc_id"] for ck in kbinfos["chunks"][:chunks_num]])
|
||||
docs = {d.id: d.meta_fields for d in docs}
|
||||
|
||||
doc2chunks = defaultdict(lambda: {"chunks": [], "meta": []})
|
||||
for ck in kbinfos["chunks"][:chunks_num]:
|
||||
doc2chunks[ck["docnm_kwd"]]["chunks"].append((f"URL: {ck['url']}\n" if "url" in ck else "") + ck["content_with_weight"])
|
||||
doc2chunks[ck["docnm_kwd"]]["meta"] = docs.get(ck["doc_id"], {})
|
||||
|
||||
knowledges = []
|
||||
for nm, cks_meta in doc2chunks.items():
|
||||
txt = f"Document: {nm} \n"
|
||||
for k, v in cks_meta["meta"].items():
|
||||
txt += f"{k}: {v}\n"
|
||||
txt += "Relevant fragments as following:\n"
|
||||
for i, chunk in enumerate(cks_meta["chunks"], 1):
|
||||
txt += f"{i}. {chunk}\n"
|
||||
knowledges.append(txt)
|
||||
return knowledges
|
||||
|
||||
|
||||
def keyword_extraction(chat_mdl, content, topn=3):
|
||||
prompt = f"""
|
||||
Role: You're a text analyzer.
|
||||
Task: extract the most important keywords/phrases of a given piece of text content.
|
||||
Requirements:
|
||||
- Summarize the text content, and give top {topn} important keywords/phrases.
|
||||
- The keywords MUST be in language of the given piece of text content.
|
||||
- The keywords are delimited by ENGLISH COMMA.
|
||||
- Keywords ONLY in output.
|
||||
|
||||
### Text Content
|
||||
{content}
|
||||
|
||||
"""
|
||||
msg = [
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": "Output: "}
|
||||
]
|
||||
_, msg = message_fit_in(msg, chat_mdl.max_length)
|
||||
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
|
||||
if isinstance(kwd, tuple):
|
||||
kwd = kwd[0]
|
||||
kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
|
||||
if kwd.find("**ERROR**") >= 0:
|
||||
return ""
|
||||
return kwd
|
||||
|
||||
|
||||
def question_proposal(chat_mdl, content, topn=3):
|
||||
prompt = f"""
|
||||
Role: You're a text analyzer.
|
||||
Task: propose {topn} questions about a given piece of text content.
|
||||
Requirements:
|
||||
- Understand and summarize the text content, and propose top {topn} important questions.
|
||||
- The questions SHOULD NOT have overlapping meanings.
|
||||
- The questions SHOULD cover the main content of the text as much as possible.
|
||||
- The questions MUST be in language of the given piece of text content.
|
||||
- One question per line.
|
||||
- Question ONLY in output.
|
||||
|
||||
### Text Content
|
||||
{content}
|
||||
|
||||
"""
|
||||
msg = [
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": "Output: "}
|
||||
]
|
||||
_, msg = message_fit_in(msg, chat_mdl.max_length)
|
||||
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.2})
|
||||
if isinstance(kwd, tuple):
|
||||
kwd = kwd[0]
|
||||
kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
|
||||
if kwd.find("**ERROR**") >= 0:
|
||||
return ""
|
||||
return kwd
|
||||
|
||||
|
||||
def full_question(tenant_id, llm_id, messages):
|
||||
if llm_id2llm_type(llm_id) == "image2text":
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.IMAGE2TEXT, llm_id)
|
||||
else:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_id)
|
||||
conv = []
|
||||
for m in messages:
|
||||
if m["role"] not in ["user", "assistant"]:
|
||||
continue
|
||||
conv.append("{}: {}".format(m["role"].upper(), m["content"]))
|
||||
conv = "\n".join(conv)
|
||||
today = datetime.date.today().isoformat()
|
||||
yesterday = (datetime.date.today() - datetime.timedelta(days=1)).isoformat()
|
||||
tomorrow = (datetime.date.today() + datetime.timedelta(days=1)).isoformat()
|
||||
prompt = f"""
|
||||
Role: A helpful assistant
|
||||
|
||||
Task and steps:
|
||||
1. Generate a full user question that would follow the conversation.
|
||||
2. If the user's question involves relative date, you need to convert it into absolute date based on the current date, which is {today}. For example: 'yesterday' would be converted to {yesterday}.
|
||||
|
||||
Requirements & Restrictions:
|
||||
- Text generated MUST be in the same language of the original user's question.
|
||||
- If the user's latest question is completely, don't do anything, just return the original question.
|
||||
- DON'T generate anything except a refined question.
|
||||
|
||||
######################
|
||||
-Examples-
|
||||
######################
|
||||
|
||||
# Example 1
|
||||
## Conversation
|
||||
USER: What is the name of Donald Trump's father?
|
||||
ASSISTANT: Fred Trump.
|
||||
USER: And his mother?
|
||||
###############
|
||||
Output: What's the name of Donald Trump's mother?
|
||||
|
||||
------------
|
||||
# Example 2
|
||||
## Conversation
|
||||
USER: What is the name of Donald Trump's father?
|
||||
ASSISTANT: Fred Trump.
|
||||
USER: And his mother?
|
||||
ASSISTANT: Mary Trump.
|
||||
User: What's her full name?
|
||||
###############
|
||||
Output: What's the full name of Donald Trump's mother Mary Trump?
|
||||
|
||||
------------
|
||||
# Example 3
|
||||
## Conversation
|
||||
USER: What's the weather today in London?
|
||||
ASSISTANT: Cloudy.
|
||||
USER: What's about tomorrow in Rochester?
|
||||
###############
|
||||
Output: What's the weather in Rochester on {tomorrow}?
|
||||
######################
|
||||
|
||||
# Real Data
|
||||
## Conversation
|
||||
{conv}
|
||||
###############
|
||||
"""
|
||||
ans = chat_mdl.chat(prompt, [{"role": "user", "content": "Output: "}], {"temperature": 0.2})
|
||||
ans = re.sub(r"<think>.*</think>", "", ans, flags=re.DOTALL)
|
||||
return ans if ans.find("**ERROR**") < 0 else messages[-1]["content"]
|
||||
|
||||
|
||||
def content_tagging(chat_mdl, content, all_tags, examples, topn=3):
|
||||
prompt = f"""
|
||||
Role: You're a text analyzer.
|
||||
|
||||
Task: Tag (put on some labels) to a given piece of text content based on the examples and the entire tag set.
|
||||
|
||||
Steps::
|
||||
- Comprehend the tag/label set.
|
||||
- Comprehend examples which all consist of both text content and assigned tags with relevance score in format of JSON.
|
||||
- Summarize the text content, and tag it with top {topn} most relevant tags from the set of tag/label and the corresponding relevance score.
|
||||
|
||||
Requirements
|
||||
- The tags MUST be from the tag set.
|
||||
- The output MUST be in JSON format only, the key is tag and the value is its relevance score.
|
||||
- The relevance score must be range from 1 to 10.
|
||||
- Keywords ONLY in output.
|
||||
|
||||
# TAG SET
|
||||
{", ".join(all_tags)}
|
||||
|
||||
"""
|
||||
for i, ex in enumerate(examples):
|
||||
prompt += """
|
||||
# Examples {}
|
||||
### Text Content
|
||||
{}
|
||||
|
||||
Output:
|
||||
{}
|
||||
|
||||
""".format(i, ex["content"], json.dumps(ex[TAG_FLD], indent=2, ensure_ascii=False))
|
||||
|
||||
prompt += f"""
|
||||
# Real Data
|
||||
### Text Content
|
||||
{content}
|
||||
|
||||
"""
|
||||
msg = [
|
||||
{"role": "system", "content": prompt},
|
||||
{"role": "user", "content": "Output: "}
|
||||
]
|
||||
_, msg = message_fit_in(msg, chat_mdl.max_length)
|
||||
kwd = chat_mdl.chat(prompt, msg[1:], {"temperature": 0.5})
|
||||
if isinstance(kwd, tuple):
|
||||
kwd = kwd[0]
|
||||
kwd = re.sub(r"<think>.*</think>", "", kwd, flags=re.DOTALL)
|
||||
if kwd.find("**ERROR**") >= 0:
|
||||
raise Exception(kwd)
|
||||
|
||||
try:
|
||||
return json_repair.loads(kwd)
|
||||
except json_repair.JSONDecodeError:
|
||||
try:
|
||||
result = kwd.replace(prompt[:-1], '').replace('user', '').replace('model', '').strip()
|
||||
result = '{' + result.split('{')[1].split('}')[0] + '}'
|
||||
return json_repair.loads(result)
|
||||
except Exception as e:
|
||||
logging.exception(f"JSON parsing error: {result} -> {e}")
|
||||
raise e
|
||||
Reference in New Issue
Block a user