mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
add conversation API (#35)
This commit is contained in:
@ -0,0 +1,4 @@
|
||||
from . import search
|
||||
from rag.utils import ELASTICSEARCH
|
||||
|
||||
retrievaler = search.Dealer(ELASTICSEARCH)
|
||||
@ -2,7 +2,7 @@
|
||||
import json
|
||||
import re
|
||||
from elasticsearch_dsl import Q, Search, A
|
||||
from typing import List, Optional, Tuple, Dict, Union
|
||||
from typing import List, Optional, Dict, Union
|
||||
from dataclasses import dataclass
|
||||
|
||||
from rag.settings import es_logger
|
||||
@ -20,6 +20,8 @@ class Dealer:
|
||||
self.qryr.flds = [
|
||||
"title_tks^10",
|
||||
"title_sm_tks^5",
|
||||
"important_kwd^30",
|
||||
"important_tks^20",
|
||||
"content_ltks^2",
|
||||
"content_sm_ltks"]
|
||||
self.es = es
|
||||
@ -38,10 +40,10 @@ class Dealer:
|
||||
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
|
||||
qv, c = emb_mdl.encode_queries(txt)
|
||||
return {
|
||||
"field": "q_%d_vec"%len(qv),
|
||||
"field": "q_%d_vec" % len(qv),
|
||||
"k": topk,
|
||||
"similarity": sim,
|
||||
"num_candidates": topk*2,
|
||||
"num_candidates": topk * 2,
|
||||
"query_vector": qv
|
||||
}
|
||||
|
||||
@ -53,16 +55,18 @@ class Dealer:
|
||||
if req.get("doc_ids"):
|
||||
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
|
||||
if "available_int" in req:
|
||||
if req["available_int"] == 0: bqry.filter.append(Q("range", available_int={"lt": 1}))
|
||||
else: bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
|
||||
if req["available_int"] == 0:
|
||||
bqry.filter.append(Q("range", available_int={"lt": 1}))
|
||||
else:
|
||||
bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
|
||||
bqry.boost = 0.05
|
||||
|
||||
s = Search()
|
||||
pg = int(req.get("page", 1)) - 1
|
||||
ps = int(req.get("size", 1000))
|
||||
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id","img_id",
|
||||
"image_id", "doc_id", "q_512_vec", "q_768_vec",
|
||||
"q_1024_vec", "q_1536_vec", "available_int"])
|
||||
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
|
||||
"image_id", "doc_id", "q_512_vec", "q_768_vec",
|
||||
"q_1024_vec", "q_1536_vec", "available_int"])
|
||||
|
||||
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
|
||||
s = s.highlight("content_ltks")
|
||||
@ -171,74 +175,106 @@ class Dealer:
|
||||
def trans2floats(txt):
|
||||
return [float(t) for t in txt.split("\t")]
|
||||
|
||||
def insert_citations(self, ans, top_idx, sres, emb_mdl,
|
||||
vfield="q_vec", cfield="content_ltks"):
|
||||
def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.3, vtweight=0.7):
|
||||
pieces = re.split(r"([;。?!!\n]|[a-z][.?;!][ \n])", answer)
|
||||
for i in range(1, len(pieces)):
|
||||
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
|
||||
pieces[i - 1] += pieces[i][0]
|
||||
pieces[i] = pieces[i][1:]
|
||||
idx = []
|
||||
pieces_ = []
|
||||
for i, t in enumerate(pieces):
|
||||
if len(t) < 5: continue
|
||||
idx.append(i)
|
||||
pieces_.append(t)
|
||||
if not pieces_: return answer
|
||||
|
||||
ins_embd = [Dealer.trans2floats(
|
||||
sres.field[sres.ids[i]][vfield]) for i in top_idx]
|
||||
ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
|
||||
s = 0
|
||||
e = 0
|
||||
res = ""
|
||||
ans_v = embd_mdl.encode(pieces_)
|
||||
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
|
||||
len(ans_v[0]), len(chunk_v[0]))
|
||||
|
||||
def citeit():
|
||||
nonlocal s, e, ans, res, emb_mdl
|
||||
if not ins_embd:
|
||||
return
|
||||
embd = emb_mdl.encode(ans[s: e])
|
||||
sim = self.qryr.hybrid_similarity(embd,
|
||||
ins_embd,
|
||||
huqie.qie(ans[s:e]).split(" "),
|
||||
ins_tw)
|
||||
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
|
||||
cites = {}
|
||||
for i,a in enumerate(pieces_):
|
||||
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
|
||||
chunk_v,
|
||||
huqie.qie(pieces_[i]).split(" "),
|
||||
chunks_tks,
|
||||
tkweight, vtweight)
|
||||
mx = np.max(sim) * 0.99
|
||||
if mx < 0.55:
|
||||
return
|
||||
cita = list(set([top_idx[i]
|
||||
for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
|
||||
for i in cita:
|
||||
res += f"@?{i}?@"
|
||||
if mx < 0.55: continue
|
||||
cites[idx[i]] = list(set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
|
||||
|
||||
return cita
|
||||
|
||||
punct = set(";。?!!")
|
||||
if not self.qryr.isChinese(ans):
|
||||
punct.add("?")
|
||||
punct.add(".")
|
||||
while e < len(ans):
|
||||
if e - s < 12 or ans[e] not in punct:
|
||||
e += 1
|
||||
continue
|
||||
if ans[e] == "." and e + \
|
||||
1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
|
||||
e += 1
|
||||
continue
|
||||
if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
|
||||
e += 1
|
||||
continue
|
||||
res += ans[s: e]
|
||||
citeit()
|
||||
res += ans[e]
|
||||
e += 1
|
||||
s = e
|
||||
|
||||
if s < len(ans):
|
||||
res += ans[s:]
|
||||
citeit()
|
||||
res = ""
|
||||
for i,p in enumerate(pieces):
|
||||
res += p
|
||||
if i not in idx:continue
|
||||
if i not in cites:continue
|
||||
res += "##%s$$"%"$".join(cites[i])
|
||||
|
||||
return res
|
||||
|
||||
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
|
||||
ins_embd = [
|
||||
Dealer.trans2floats(
|
||||
sres.field[i]["q_%d_vec"%len(sres.query_vector)]) for i in sres.ids]
|
||||
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
|
||||
if not ins_embd:
|
||||
return []
|
||||
ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
|
||||
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
|
||||
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
||||
ins_embd,
|
||||
huqie.qie(query).split(" "),
|
||||
ins_tw, tkweight, vtweight)
|
||||
ins_embd,
|
||||
huqie.qie(query).split(" "),
|
||||
ins_tw, tkweight, vtweight)
|
||||
return sim, tksim, vtsim
|
||||
|
||||
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
|
||||
return self.qryr.hybrid_similarity(ans_embd,
|
||||
ins_embd,
|
||||
huqie.qie(ans).split(" "),
|
||||
huqie.qie(inst).split(" "))
|
||||
|
||||
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
|
||||
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
|
||||
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
|
||||
"question": question, "vector": True,
|
||||
"similarity": similarity_threshold}
|
||||
sres = self.search(req, index_name(tenant_id), embd_mdl)
|
||||
|
||||
sim, tsim, vsim = self.rerank(
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
||||
idx = np.argsort(sim * -1)
|
||||
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
||||
dim = len(sres.query_vector)
|
||||
start_idx = (page - 1) * page_size
|
||||
for i in idx:
|
||||
ranks["total"] += 1
|
||||
if sim[i] < similarity_threshold:
|
||||
break
|
||||
start_idx -= 1
|
||||
if start_idx >= 0:
|
||||
continue
|
||||
if len(ranks["chunks"]) == page_size:
|
||||
if aggs:
|
||||
continue
|
||||
break
|
||||
id = sres.ids[i]
|
||||
dnm = sres.field[id]["docnm_kwd"]
|
||||
d = {
|
||||
"chunk_id": id,
|
||||
"content_ltks": sres.field[id]["content_ltks"],
|
||||
"doc_id": sres.field[id]["doc_id"],
|
||||
"docnm_kwd": dnm,
|
||||
"kb_id": sres.field[id]["kb_id"],
|
||||
"important_kwd": sres.field[id].get("important_kwd", []),
|
||||
"img_id": sres.field[id].get("img_id", ""),
|
||||
"similarity": sim[i],
|
||||
"vector_similarity": vsim[i],
|
||||
"term_similarity": tsim[i],
|
||||
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim)))
|
||||
}
|
||||
ranks["chunks"].append(d)
|
||||
if dnm not in ranks["doc_aggs"]:
|
||||
ranks["doc_aggs"][dnm] = 0
|
||||
ranks["doc_aggs"][dnm] += 1
|
||||
|
||||
return ranks
|
||||
|
||||
Reference in New Issue
Block a user