add conversation API (#35)

This commit is contained in:
KevinHuSh
2024-01-18 19:28:37 +08:00
committed by GitHub
parent fad2ec7cf3
commit 4a858d33b6
13 changed files with 425 additions and 153 deletions

View File

@ -0,0 +1,4 @@
from . import search
from rag.utils import ELASTICSEARCH
retrievaler = search.Dealer(ELASTICSEARCH)

View File

@ -2,7 +2,7 @@
import json
import re
from elasticsearch_dsl import Q, Search, A
from typing import List, Optional, Tuple, Dict, Union
from typing import List, Optional, Dict, Union
from dataclasses import dataclass
from rag.settings import es_logger
@ -20,6 +20,8 @@ class Dealer:
self.qryr.flds = [
"title_tks^10",
"title_sm_tks^5",
"important_kwd^30",
"important_tks^20",
"content_ltks^2",
"content_sm_ltks"]
self.es = es
@ -38,10 +40,10 @@ class Dealer:
def _vector(self, txt, emb_mdl, sim=0.8, topk=10):
qv, c = emb_mdl.encode_queries(txt)
return {
"field": "q_%d_vec"%len(qv),
"field": "q_%d_vec" % len(qv),
"k": topk,
"similarity": sim,
"num_candidates": topk*2,
"num_candidates": topk * 2,
"query_vector": qv
}
@ -53,16 +55,18 @@ class Dealer:
if req.get("doc_ids"):
bqry.filter.append(Q("terms", doc_id=req["doc_ids"]))
if "available_int" in req:
if req["available_int"] == 0: bqry.filter.append(Q("range", available_int={"lt": 1}))
else: bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
if req["available_int"] == 0:
bqry.filter.append(Q("range", available_int={"lt": 1}))
else:
bqry.filter.append(Q("bool", must_not=Q("range", available_int={"lt": 1})))
bqry.boost = 0.05
s = Search()
pg = int(req.get("page", 1)) - 1
ps = int(req.get("size", 1000))
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id","img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec",
"q_1024_vec", "q_1536_vec", "available_int"])
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
"image_id", "doc_id", "q_512_vec", "q_768_vec",
"q_1024_vec", "q_1536_vec", "available_int"])
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
s = s.highlight("content_ltks")
@ -171,74 +175,106 @@ class Dealer:
def trans2floats(txt):
return [float(t) for t in txt.split("\t")]
def insert_citations(self, ans, top_idx, sres, emb_mdl,
vfield="q_vec", cfield="content_ltks"):
def insert_citations(self, answer, chunks, chunk_v, embd_mdl, tkweight=0.3, vtweight=0.7):
pieces = re.split(r"([;。?!\n]|[a-z][.?;!][ \n])", answer)
for i in range(1, len(pieces)):
if re.match(r"[a-z][.?;!][ \n]", pieces[i]):
pieces[i - 1] += pieces[i][0]
pieces[i] = pieces[i][1:]
idx = []
pieces_ = []
for i, t in enumerate(pieces):
if len(t) < 5: continue
idx.append(i)
pieces_.append(t)
if not pieces_: return answer
ins_embd = [Dealer.trans2floats(
sres.field[sres.ids[i]][vfield]) for i in top_idx]
ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
s = 0
e = 0
res = ""
ans_v = embd_mdl.encode(pieces_)
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
len(ans_v[0]), len(chunk_v[0]))
def citeit():
nonlocal s, e, ans, res, emb_mdl
if not ins_embd:
return
embd = emb_mdl.encode(ans[s: e])
sim = self.qryr.hybrid_similarity(embd,
ins_embd,
huqie.qie(ans[s:e]).split(" "),
ins_tw)
chunks_tks = [huqie.qie(ck).split(" ") for ck in chunks]
cites = {}
for i,a in enumerate(pieces_):
sim, tksim, vtsim = self.qryr.hybrid_similarity(ans_v[i],
chunk_v,
huqie.qie(pieces_[i]).split(" "),
chunks_tks,
tkweight, vtweight)
mx = np.max(sim) * 0.99
if mx < 0.55:
return
cita = list(set([top_idx[i]
for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
for i in cita:
res += f"@?{i}?@"
if mx < 0.55: continue
cites[idx[i]] = list(set([str(i) for i in range(len(chunk_v)) if sim[i] > mx]))[:4]
return cita
punct = set(";。?!")
if not self.qryr.isChinese(ans):
punct.add("?")
punct.add(".")
while e < len(ans):
if e - s < 12 or ans[e] not in punct:
e += 1
continue
if ans[e] == "." and e + \
1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
e += 1
continue
if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
e += 1
continue
res += ans[s: e]
citeit()
res += ans[e]
e += 1
s = e
if s < len(ans):
res += ans[s:]
citeit()
res = ""
for i,p in enumerate(pieces):
res += p
if i not in idx:continue
if i not in cites:continue
res += "##%s$$"%"$".join(cites[i])
return res
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7, cfield="content_ltks"):
ins_embd = [
Dealer.trans2floats(
sres.field[i]["q_%d_vec"%len(sres.query_vector)]) for i in sres.ids]
sres.field[i]["q_%d_vec" % len(sres.query_vector)]) for i in sres.ids]
if not ins_embd:
return []
ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ") for i in sres.ids]
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
ins_embd,
huqie.qie(query).split(" "),
ins_tw, tkweight, vtweight)
ins_embd,
huqie.qie(query).split(" "),
ins_tw, tkweight, vtweight)
return sim, tksim, vtsim
def hybrid_similarity(self, ans_embd, ins_embd, ans, inst):
return self.qryr.hybrid_similarity(ans_embd,
ins_embd,
huqie.qie(ans).split(" "),
huqie.qie(inst).split(" "))
def retrieval(self, question, embd_mdl, tenant_id, kb_ids, page, page_size, similarity_threshold=0.2,
vector_similarity_weight=0.3, top=1024, doc_ids=None, aggs=True):
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold}
sres = self.search(req, index_name(tenant_id), embd_mdl)
sim, tsim, vsim = self.rerank(
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim * -1)
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
dim = len(sres.query_vector)
start_idx = (page - 1) * page_size
for i in idx:
ranks["total"] += 1
if sim[i] < similarity_threshold:
break
start_idx -= 1
if start_idx >= 0:
continue
if len(ranks["chunks"]) == page_size:
if aggs:
continue
break
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i],
"vector": self.trans2floats(sres.field[id].get("q_%d_vec" % dim, "\t".join(["0"] * dim)))
}
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:
ranks["doc_aggs"][dnm] = 0
ranks["doc_aggs"][dnm] += 1
return ranks