add conversation API (#35)

This commit is contained in:
KevinHuSh
2024-01-18 19:28:37 +08:00
committed by GitHub
parent fad2ec7cf3
commit 4a858d33b6
13 changed files with 425 additions and 153 deletions

View File

@ -13,17 +13,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
#
import hashlib
import re
import numpy as np
from flask import request
from flask_login import login_required, current_user
from rag.nlp import search, huqie
from elasticsearch_dsl import Q
from rag.nlp import search, huqie, retrievaler
from rag.utils import ELASTICSEARCH, rmSpace
from api.db import LLMType
from api.db.services import duplicate_name
from api.db.services.kb_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import UserTenantService
@ -31,8 +27,9 @@ from api.utils.api_utils import server_error_response, get_data_error_result, va
from api.db.services.document_service import DocumentService
from api.settings import RetCode
from api.utils.api_utils import get_json_result
import hashlib
import re
retrival = search.Dealer(ELASTICSEARCH)
@manager.route('/list', methods=['POST'])
@login_required
@ -45,12 +42,14 @@ def list():
question = req.get("keywords", "")
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
query = {
"doc_ids": [doc_id], "page": page, "size": size, "question": question
}
if "available_int" in req: query["available_int"] = int(req["available_int"])
sres = retrival.search(query, search.index_name(tenant_id))
if "available_int" in req:
query["available_int"] = int(req["available_int"])
sres = retrievaler.search(query, search.index_name(tenant_id))
res = {"total": sres.total, "chunks": []}
for id in sres.ids:
d = {
@ -67,7 +66,7 @@ def list():
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'Index not found!',
retcode=RetCode.DATA_ERROR)
retcode=RetCode.DATA_ERROR)
return server_error_response(e)
@ -79,8 +78,11 @@ def get():
tenants = UserTenantService.query(user_id=current_user.id)
if not tenants:
return get_data_error_result(retmsg="Tenant not found!")
res = ELASTICSEARCH.get(chunk_id, search.index_name(tenants[0].tenant_id))
if not res.get("found"):return server_error_response("Chunk not found")
res = ELASTICSEARCH.get(
chunk_id, search.index_name(
tenants[0].tenant_id))
if not res.get("found"):
return server_error_response("Chunk not found")
id = res["_id"]
res = res["_source"]
res["chunk_id"] = id
@ -90,7 +92,8 @@ def get():
k.append(n)
if re.search(r"(_tks|_ltks)", n):
res[n] = rmSpace(res[n])
for n in k: del res[n]
for n in k:
del res[n]
return get_json_result(data=res)
except Exception as e:
@ -102,7 +105,8 @@ def get():
@manager.route('/set', methods=['POST'])
@login_required
@validate_request("doc_id", "chunk_id", "content_ltks", "important_kwd", "docnm_kwd")
@validate_request("doc_id", "chunk_id", "content_ltks",
"important_kwd")
def set():
req = request.json
d = {"id": req["chunk_id"]}
@ -110,15 +114,21 @@ def set():
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
if "available_int" in req: d["available_int"] = req["available_int"]
if "available_int" in req:
d["available_int"] = req["available_int"]
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
v, c = embd_mdl.encode([req["docnm_kwd"], req["content_ltks"]])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec"%len(v)] = v.tolist()
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
return get_json_result(data=True)
except Exception as e:
@ -132,19 +142,32 @@ def switch():
req = request.json
try:
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
if not ELASTICSEARCH.upsert([{"id": i, "available_int": int(req["available_int"])} for i in req["chunk_ids"]],
search.index_name(tenant_id)):
search.index_name(tenant_id)):
return get_data_error_result(retmsg="Index updating failure")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/rm', methods=['POST'])
@login_required
@validate_request("chunk_ids")
def rm():
req = request.json
try:
if not ELASTICSEARCH.deleteByQuery(Q("ids", values=req["chunk_ids"]), search.index_name(current_user.id)):
return get_data_error_result(retmsg="Index updating failure")
return get_json_result(data=True)
except Exception as e:
return server_error_response(e)
@manager.route('/create', methods=['POST'])
@login_required
@validate_request("doc_id", "content_ltks", "important_kwd")
@validate_request("doc_id", "content_ltks")
def create():
req = request.json
md5 = hashlib.md5()
@ -152,24 +175,27 @@ def create():
chunck_id = md5.hexdigest()
d = {"id": chunck_id, "content_ltks": huqie.qie(req["content_ltks"])}
d["content_sm_ltks"] = huqie.qieqie(d["content_ltks"])
d["important_kwd"] = req["important_kwd"]
d["important_tks"] = huqie.qie(" ".join(req["important_kwd"]))
d["important_kwd"] = req.get("important_kwd", [])
d["important_tks"] = huqie.qie(" ".join(req.get("important_kwd", [])))
try:
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e: return get_data_error_result(retmsg="Document not found!")
if not e:
return get_data_error_result(retmsg="Document not found!")
d["kb_id"] = [doc.kb_id]
d["docnm_kwd"] = doc.name
d["doc_id"] = doc.id
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id: return get_data_error_result(retmsg="Tenant not found!")
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_mdl = TenantLLMService.model_instance(tenant_id, LLMType.EMBEDDING.value)
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value)
v, c = embd_mdl.encode([doc.name, req["content_ltks"]])
DocumentService.increment_chunk_num(req["doc_id"], doc.kb_id, c, 1, 0)
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec"%len(v)] = v.tolist()
d["q_%d_vec" % len(v)] = v.tolist()
ELASTICSEARCH.upsert([d], search.index_name(tenant_id))
return get_json_result(data={"chunk_id": chunck_id})
except Exception as e:
@ -194,44 +220,15 @@ def retrieval_test():
if not e:
return get_data_error_result(retmsg="Knowledgebase not found!")
embd_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.EMBEDDING.value)
sres = retrival.search({"kb_ids": [kb_id], "doc_ids": doc_ids, "size": top,
"question": question, "vector": True,
"similarity": similarity_threshold},
search.index_name(kb.tenant_id),
embd_mdl)
sim, tsim, vsim = retrival.rerank(sres, question, 1-vector_similarity_weight, vector_similarity_weight)
idx = np.argsort(sim*-1)
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
start_idx = (page-1)*size
for i in idx:
ranks["total"] += 1
if sim[i] < similarity_threshold: break
start_idx -= 1
if start_idx >= 0:continue
if len(ranks["chunks"]) == size:continue
id = sres.ids[i]
dnm = sres.field[id]["docnm_kwd"]
d = {
"chunk_id": id,
"content_ltks": sres.field[id]["content_ltks"],
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": dnm,
"kb_id": sres.field[id]["kb_id"],
"important_kwd": sres.field[id].get("important_kwd", []),
"img_id": sres.field[id].get("img_id", ""),
"similarity": sim[i],
"vector_similarity": vsim[i],
"term_similarity": tsim[i]
}
ranks["chunks"].append(d)
if dnm not in ranks["doc_aggs"]:ranks["doc_aggs"][dnm] = 0
ranks["doc_aggs"][dnm] += 1
embd_mdl = TenantLLMService.model_instance(
kb.tenant_id, LLMType.EMBEDDING.value)
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size, similarity_threshold,
vector_similarity_weight, top, doc_ids)
return get_json_result(data=ranks)
except Exception as e:
if str(e).find("not_found") > 0:
return get_json_result(data=False, retmsg=f'Index not found!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e)
retcode=RetCode.DATA_ERROR)
return server_error_response(e)