mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Refactor for total_tokens. (#4652)
### What problem does this PR solve? #4567 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
@ -53,7 +53,7 @@ class Base(ABC):
|
|||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
else:
|
else:
|
||||||
ans += LENGTH_NOTIFICATION_EN
|
ans += LENGTH_NOTIFICATION_EN
|
||||||
return ans, response.usage.total_tokens
|
return ans, self.total_token_count(response)
|
||||||
except openai.APIError as e:
|
except openai.APIError as e:
|
||||||
return "**ERROR**: " + str(e), 0
|
return "**ERROR**: " + str(e), 0
|
||||||
|
|
||||||
@ -75,15 +75,11 @@ class Base(ABC):
|
|||||||
resp.choices[0].delta.content = ""
|
resp.choices[0].delta.content = ""
|
||||||
ans += resp.choices[0].delta.content
|
ans += resp.choices[0].delta.content
|
||||||
|
|
||||||
if not hasattr(resp, "usage") or not resp.usage:
|
tol = self.total_token_count(resp)
|
||||||
total_tokens = (
|
if not tol:
|
||||||
total_tokens
|
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
||||||
+ num_tokens_from_string(resp.choices[0].delta.content)
|
|
||||||
)
|
|
||||||
elif isinstance(resp.usage, dict):
|
|
||||||
total_tokens = resp.usage.get("total_tokens", total_tokens)
|
|
||||||
else:
|
else:
|
||||||
total_tokens = resp.usage.total_tokens
|
total_tokens = tol
|
||||||
|
|
||||||
if resp.choices[0].finish_reason == "length":
|
if resp.choices[0].finish_reason == "length":
|
||||||
if is_chinese(ans):
|
if is_chinese(ans):
|
||||||
@ -97,6 +93,17 @@ class Base(ABC):
|
|||||||
|
|
||||||
yield total_tokens
|
yield total_tokens
|
||||||
|
|
||||||
|
def total_token_count(self, resp):
|
||||||
|
try:
|
||||||
|
return resp.usage.total_tokens
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
return resp["usage"]["total_tokens"]
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return 0
|
||||||
|
|
||||||
|
|
||||||
class GptTurbo(Base):
|
class GptTurbo(Base):
|
||||||
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
|
def __init__(self, key, model_name="gpt-3.5-turbo", base_url="https://api.openai.com/v1"):
|
||||||
@ -182,7 +189,7 @@ class BaiChuanChat(Base):
|
|||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
else:
|
else:
|
||||||
ans += LENGTH_NOTIFICATION_EN
|
ans += LENGTH_NOTIFICATION_EN
|
||||||
return ans, response.usage.total_tokens
|
return ans, self.total_token_count(response)
|
||||||
except openai.APIError as e:
|
except openai.APIError as e:
|
||||||
return "**ERROR**: " + str(e), 0
|
return "**ERROR**: " + str(e), 0
|
||||||
|
|
||||||
@ -212,14 +219,11 @@ class BaiChuanChat(Base):
|
|||||||
if not resp.choices[0].delta.content:
|
if not resp.choices[0].delta.content:
|
||||||
resp.choices[0].delta.content = ""
|
resp.choices[0].delta.content = ""
|
||||||
ans += resp.choices[0].delta.content
|
ans += resp.choices[0].delta.content
|
||||||
total_tokens = (
|
tol = self.total_token_count(resp)
|
||||||
(
|
if not tol:
|
||||||
total_tokens
|
total_tokens += num_tokens_from_string(resp.choices[0].delta.content)
|
||||||
+ num_tokens_from_string(resp.choices[0].delta.content)
|
else:
|
||||||
)
|
total_tokens = tol
|
||||||
if not hasattr(resp, "usage")
|
|
||||||
else resp.usage["total_tokens"]
|
|
||||||
)
|
|
||||||
if resp.choices[0].finish_reason == "length":
|
if resp.choices[0].finish_reason == "length":
|
||||||
if is_chinese([ans]):
|
if is_chinese([ans]):
|
||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
@ -256,7 +260,7 @@ class QWenChat(Base):
|
|||||||
tk_count = 0
|
tk_count = 0
|
||||||
if response.status_code == HTTPStatus.OK:
|
if response.status_code == HTTPStatus.OK:
|
||||||
ans += response.output.choices[0]['message']['content']
|
ans += response.output.choices[0]['message']['content']
|
||||||
tk_count += response.usage.total_tokens
|
tk_count += self.total_token_count(response)
|
||||||
if response.output.choices[0].get("finish_reason", "") == "length":
|
if response.output.choices[0].get("finish_reason", "") == "length":
|
||||||
if is_chinese([ans]):
|
if is_chinese([ans]):
|
||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
@ -292,7 +296,7 @@ class QWenChat(Base):
|
|||||||
for resp in response:
|
for resp in response:
|
||||||
if resp.status_code == HTTPStatus.OK:
|
if resp.status_code == HTTPStatus.OK:
|
||||||
ans = resp.output.choices[0]['message']['content']
|
ans = resp.output.choices[0]['message']['content']
|
||||||
tk_count = resp.usage.total_tokens
|
tk_count = self.total_token_count(resp)
|
||||||
if resp.output.choices[0].get("finish_reason", "") == "length":
|
if resp.output.choices[0].get("finish_reason", "") == "length":
|
||||||
if is_chinese(ans):
|
if is_chinese(ans):
|
||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
@ -334,7 +338,7 @@ class ZhipuChat(Base):
|
|||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
else:
|
else:
|
||||||
ans += LENGTH_NOTIFICATION_EN
|
ans += LENGTH_NOTIFICATION_EN
|
||||||
return ans, response.usage.total_tokens
|
return ans, self.total_token_count(response)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return "**ERROR**: " + str(e), 0
|
return "**ERROR**: " + str(e), 0
|
||||||
|
|
||||||
@ -364,9 +368,9 @@ class ZhipuChat(Base):
|
|||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
else:
|
else:
|
||||||
ans += LENGTH_NOTIFICATION_EN
|
ans += LENGTH_NOTIFICATION_EN
|
||||||
tk_count = resp.usage.total_tokens
|
tk_count = self.total_token_count(resp)
|
||||||
if resp.choices[0].finish_reason == "stop":
|
if resp.choices[0].finish_reason == "stop":
|
||||||
tk_count = resp.usage.total_tokens
|
tk_count = self.total_token_count(resp)
|
||||||
yield ans
|
yield ans
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
yield ans + "\n**ERROR**: " + str(e)
|
yield ans + "\n**ERROR**: " + str(e)
|
||||||
@ -569,7 +573,7 @@ class MiniMaxChat(Base):
|
|||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
else:
|
else:
|
||||||
ans += LENGTH_NOTIFICATION_EN
|
ans += LENGTH_NOTIFICATION_EN
|
||||||
return ans, response["usage"]["total_tokens"]
|
return ans, self.total_token_count(response)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return "**ERROR**: " + str(e), 0
|
return "**ERROR**: " + str(e), 0
|
||||||
|
|
||||||
@ -603,11 +607,11 @@ class MiniMaxChat(Base):
|
|||||||
if "choices" in resp and "delta" in resp["choices"][0]:
|
if "choices" in resp and "delta" in resp["choices"][0]:
|
||||||
text = resp["choices"][0]["delta"]["content"]
|
text = resp["choices"][0]["delta"]["content"]
|
||||||
ans += text
|
ans += text
|
||||||
total_tokens = (
|
tol = self.total_token_count(resp)
|
||||||
total_tokens + num_tokens_from_string(text)
|
if not tol:
|
||||||
if "usage" not in resp
|
total_tokens += num_tokens_from_string(text)
|
||||||
else resp["usage"]["total_tokens"]
|
else:
|
||||||
)
|
total_tokens = tol
|
||||||
yield ans
|
yield ans
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@ -640,7 +644,7 @@ class MistralChat(Base):
|
|||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
else:
|
else:
|
||||||
ans += LENGTH_NOTIFICATION_EN
|
ans += LENGTH_NOTIFICATION_EN
|
||||||
return ans, response.usage.total_tokens
|
return ans, self.total_token_count(response)
|
||||||
except openai.APIError as e:
|
except openai.APIError as e:
|
||||||
return "**ERROR**: " + str(e), 0
|
return "**ERROR**: " + str(e), 0
|
||||||
|
|
||||||
@ -838,7 +842,7 @@ class GeminiChat(Base):
|
|||||||
yield 0
|
yield 0
|
||||||
|
|
||||||
|
|
||||||
class GroqChat:
|
class GroqChat(Base):
|
||||||
def __init__(self, key, model_name, base_url=''):
|
def __init__(self, key, model_name, base_url=''):
|
||||||
from groq import Groq
|
from groq import Groq
|
||||||
self.client = Groq(api_key=key)
|
self.client = Groq(api_key=key)
|
||||||
@ -863,7 +867,7 @@ class GroqChat:
|
|||||||
ans += LENGTH_NOTIFICATION_CN
|
ans += LENGTH_NOTIFICATION_CN
|
||||||
else:
|
else:
|
||||||
ans += LENGTH_NOTIFICATION_EN
|
ans += LENGTH_NOTIFICATION_EN
|
||||||
return ans, response.usage.total_tokens
|
return ans, self.total_token_count(response)
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return ans + "\n**ERROR**: " + str(e), 0
|
return ans + "\n**ERROR**: " + str(e), 0
|
||||||
|
|
||||||
@ -1255,7 +1259,7 @@ class BaiduYiyanChat(Base):
|
|||||||
**gen_conf
|
**gen_conf
|
||||||
).body
|
).body
|
||||||
ans = response['result']
|
ans = response['result']
|
||||||
return ans, response["usage"]["total_tokens"]
|
return ans, self.total_token_count(response)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
return ans + "\n**ERROR**: " + str(e), 0
|
return ans + "\n**ERROR**: " + str(e), 0
|
||||||
@ -1283,7 +1287,7 @@ class BaiduYiyanChat(Base):
|
|||||||
for resp in response:
|
for resp in response:
|
||||||
resp = resp.body
|
resp = resp.body
|
||||||
ans += resp['result']
|
ans += resp['result']
|
||||||
total_tokens = resp["usage"]["total_tokens"]
|
total_tokens = self.total_token_count(resp)
|
||||||
|
|
||||||
yield ans
|
yield ans
|
||||||
|
|
||||||
|
|||||||
@ -44,11 +44,23 @@ class Base(ABC):
|
|||||||
def encode_queries(self, text: str):
|
def encode_queries(self, text: str):
|
||||||
raise NotImplementedError("Please implement encode method!")
|
raise NotImplementedError("Please implement encode method!")
|
||||||
|
|
||||||
|
def total_token_count(self, resp):
|
||||||
|
try:
|
||||||
|
return resp.usage.total_tokens
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
return resp["usage"]["total_tokens"]
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return 0
|
||||||
|
|
||||||
|
|
||||||
class DefaultEmbedding(Base):
|
class DefaultEmbedding(Base):
|
||||||
_model = None
|
_model = None
|
||||||
_model_name = ""
|
_model_name = ""
|
||||||
_model_lock = threading.Lock()
|
_model_lock = threading.Lock()
|
||||||
|
|
||||||
def __init__(self, key, model_name, **kwargs):
|
def __init__(self, key, model_name, **kwargs):
|
||||||
"""
|
"""
|
||||||
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
||||||
@ -115,13 +127,13 @@ class OpenAIEmbed(Base):
|
|||||||
res = self.client.embeddings.create(input=texts[i:i + batch_size],
|
res = self.client.embeddings.create(input=texts[i:i + batch_size],
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
ress.extend([d.embedding for d in res.data])
|
ress.extend([d.embedding for d in res.data])
|
||||||
total_tokens += res.usage.total_tokens
|
total_tokens += self.total_token_count(res)
|
||||||
return np.array(ress), total_tokens
|
return np.array(ress), total_tokens
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
res = self.client.embeddings.create(input=[truncate(text, 8191)],
|
res = self.client.embeddings.create(input=[truncate(text, 8191)],
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||||
|
|
||||||
|
|
||||||
class LocalAIEmbed(Base):
|
class LocalAIEmbed(Base):
|
||||||
@ -188,7 +200,7 @@ class QWenEmbed(Base):
|
|||||||
for e in resp["output"]["embeddings"]:
|
for e in resp["output"]["embeddings"]:
|
||||||
embds[e["text_index"]] = e["embedding"]
|
embds[e["text_index"]] = e["embedding"]
|
||||||
res.extend(embds)
|
res.extend(embds)
|
||||||
token_count += resp["usage"]["total_tokens"]
|
token_count += self.total_token_count(resp)
|
||||||
return np.array(res), token_count
|
return np.array(res), token_count
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
||||||
@ -203,7 +215,7 @@ class QWenEmbed(Base):
|
|||||||
text_type="query"
|
text_type="query"
|
||||||
)
|
)
|
||||||
return np.array(resp["output"]["embeddings"][0]
|
return np.array(resp["output"]["embeddings"][0]
|
||||||
["embedding"]), resp["usage"]["total_tokens"]
|
["embedding"]), self.total_token_count(resp)
|
||||||
except Exception:
|
except Exception:
|
||||||
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
||||||
return np.array([]), 0
|
return np.array([]), 0
|
||||||
@ -229,13 +241,13 @@ class ZhipuEmbed(Base):
|
|||||||
res = self.client.embeddings.create(input=txt,
|
res = self.client.embeddings.create(input=txt,
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
arr.append(res.data[0].embedding)
|
arr.append(res.data[0].embedding)
|
||||||
tks_num += res.usage.total_tokens
|
tks_num += self.total_token_count(res)
|
||||||
return np.array(arr), tks_num
|
return np.array(arr), tks_num
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
res = self.client.embeddings.create(input=text,
|
res = self.client.embeddings.create(input=text,
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||||
|
|
||||||
|
|
||||||
class OllamaEmbed(Base):
|
class OllamaEmbed(Base):
|
||||||
@ -318,13 +330,13 @@ class XinferenceEmbed(Base):
|
|||||||
for i in range(0, len(texts), batch_size):
|
for i in range(0, len(texts), batch_size):
|
||||||
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
|
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
|
||||||
ress.extend([d.embedding for d in res.data])
|
ress.extend([d.embedding for d in res.data])
|
||||||
total_tokens += res.usage.total_tokens
|
total_tokens += self.total_token_count(res)
|
||||||
return np.array(ress), total_tokens
|
return np.array(ress), total_tokens
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
res = self.client.embeddings.create(input=[text],
|
res = self.client.embeddings.create(input=[text],
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||||
|
|
||||||
|
|
||||||
class YoudaoEmbed(Base):
|
class YoudaoEmbed(Base):
|
||||||
@ -383,7 +395,7 @@ class JinaEmbed(Base):
|
|||||||
}
|
}
|
||||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||||
ress.extend([d["embedding"] for d in res["data"]])
|
ress.extend([d["embedding"] for d in res["data"]])
|
||||||
token_count += res["usage"]["total_tokens"]
|
token_count += self.total_token_count(res)
|
||||||
return np.array(ress), token_count
|
return np.array(ress), token_count
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
@ -447,13 +459,13 @@ class MistralEmbed(Base):
|
|||||||
res = self.client.embeddings(input=texts[i:i + batch_size],
|
res = self.client.embeddings(input=texts[i:i + batch_size],
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
ress.extend([d.embedding for d in res.data])
|
ress.extend([d.embedding for d in res.data])
|
||||||
token_count += res.usage.total_tokens
|
token_count += self.total_token_count(res)
|
||||||
return np.array(ress), token_count
|
return np.array(ress), token_count
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
res = self.client.embeddings(input=[truncate(text, 8196)],
|
res = self.client.embeddings(input=[truncate(text, 8196)],
|
||||||
model=self.model_name)
|
model=self.model_name)
|
||||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||||
|
|
||||||
|
|
||||||
class BedrockEmbed(Base):
|
class BedrockEmbed(Base):
|
||||||
@ -565,7 +577,7 @@ class NvidiaEmbed(Base):
|
|||||||
}
|
}
|
||||||
res = requests.post(self.base_url, headers=self.headers, json=payload).json()
|
res = requests.post(self.base_url, headers=self.headers, json=payload).json()
|
||||||
ress.extend([d["embedding"] for d in res["data"]])
|
ress.extend([d["embedding"] for d in res["data"]])
|
||||||
token_count += res["usage"]["total_tokens"]
|
token_count += self.total_token_count(res)
|
||||||
return np.array(ress), token_count
|
return np.array(ress), token_count
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
@ -677,7 +689,7 @@ class SILICONFLOWEmbed(Base):
|
|||||||
if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
|
if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
|
||||||
raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
|
raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
|
||||||
ress.extend([d["embedding"] for d in res["data"]])
|
ress.extend([d["embedding"] for d in res["data"]])
|
||||||
token_count += res["usage"]["total_tokens"]
|
token_count += self.total_token_count(res)
|
||||||
return np.array(ress), token_count
|
return np.array(ress), token_count
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
@ -689,7 +701,7 @@ class SILICONFLOWEmbed(Base):
|
|||||||
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
|
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
|
||||||
if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
|
if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
|
||||||
raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
|
raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
|
||||||
return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
|
return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
|
||||||
|
|
||||||
|
|
||||||
class ReplicateEmbed(Base):
|
class ReplicateEmbed(Base):
|
||||||
@ -727,14 +739,14 @@ class BaiduYiyanEmbed(Base):
|
|||||||
res = self.client.do(model=self.model_name, texts=texts).body
|
res = self.client.do(model=self.model_name, texts=texts).body
|
||||||
return (
|
return (
|
||||||
np.array([r["embedding"] for r in res["data"]]),
|
np.array([r["embedding"] for r in res["data"]]),
|
||||||
res["usage"]["total_tokens"],
|
self.total_token_count(res),
|
||||||
)
|
)
|
||||||
|
|
||||||
def encode_queries(self, text):
|
def encode_queries(self, text):
|
||||||
res = self.client.do(model=self.model_name, texts=[text]).body
|
res = self.client.do(model=self.model_name, texts=[text]).body
|
||||||
return (
|
return (
|
||||||
np.array([r["embedding"] for r in res["data"]]),
|
np.array([r["embedding"] for r in res["data"]]),
|
||||||
res["usage"]["total_tokens"],
|
self.total_token_count(res),
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@ -42,6 +42,17 @@ class Base(ABC):
|
|||||||
def similarity(self, query: str, texts: list):
|
def similarity(self, query: str, texts: list):
|
||||||
raise NotImplementedError("Please implement encode method!")
|
raise NotImplementedError("Please implement encode method!")
|
||||||
|
|
||||||
|
def total_token_count(self, resp):
|
||||||
|
try:
|
||||||
|
return resp.usage.total_tokens
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
try:
|
||||||
|
return resp["usage"]["total_tokens"]
|
||||||
|
except Exception:
|
||||||
|
pass
|
||||||
|
return 0
|
||||||
|
|
||||||
|
|
||||||
class DefaultRerank(Base):
|
class DefaultRerank(Base):
|
||||||
_model = None
|
_model = None
|
||||||
@ -115,7 +126,7 @@ class JinaRerank(Base):
|
|||||||
rank = np.zeros(len(texts), dtype=float)
|
rank = np.zeros(len(texts), dtype=float)
|
||||||
for d in res["results"]:
|
for d in res["results"]:
|
||||||
rank[d["index"]] = d["relevance_score"]
|
rank[d["index"]] = d["relevance_score"]
|
||||||
return rank, res["usage"]["total_tokens"]
|
return rank, self.total_token_count(res)
|
||||||
|
|
||||||
|
|
||||||
class YoudaoRerank(DefaultRerank):
|
class YoudaoRerank(DefaultRerank):
|
||||||
@ -417,7 +428,7 @@ class BaiduYiyanRerank(Base):
|
|||||||
rank = np.zeros(len(texts), dtype=float)
|
rank = np.zeros(len(texts), dtype=float)
|
||||||
for d in res["results"]:
|
for d in res["results"]:
|
||||||
rank[d["index"]] = d["relevance_score"]
|
rank[d["index"]] = d["relevance_score"]
|
||||||
return rank, res["usage"]["total_tokens"]
|
return rank, self.total_token_count(res)
|
||||||
|
|
||||||
|
|
||||||
class VoyageRerank(Base):
|
class VoyageRerank(Base):
|
||||||
|
|||||||
Reference in New Issue
Block a user