mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Refactor for total_tokens. (#4652)
### What problem does this PR solve? #4567 ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
@ -44,11 +44,23 @@ class Base(ABC):
|
||||
def encode_queries(self, text: str):
|
||||
raise NotImplementedError("Please implement encode method!")
|
||||
|
||||
def total_token_count(self, resp):
|
||||
try:
|
||||
return resp.usage.total_tokens
|
||||
except Exception:
|
||||
pass
|
||||
try:
|
||||
return resp["usage"]["total_tokens"]
|
||||
except Exception:
|
||||
pass
|
||||
return 0
|
||||
|
||||
|
||||
class DefaultEmbedding(Base):
|
||||
_model = None
|
||||
_model_name = ""
|
||||
_model_lock = threading.Lock()
|
||||
|
||||
def __init__(self, key, model_name, **kwargs):
|
||||
"""
|
||||
If you have trouble downloading HuggingFace models, -_^ this might help!!
|
||||
@ -115,13 +127,13 @@ class OpenAIEmbed(Base):
|
||||
res = self.client.embeddings.create(input=texts[i:i + batch_size],
|
||||
model=self.model_name)
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
total_tokens += res.usage.total_tokens
|
||||
total_tokens += self.total_token_count(res)
|
||||
return np.array(ress), total_tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=[truncate(text, 8191)],
|
||||
model=self.model_name)
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
|
||||
|
||||
class LocalAIEmbed(Base):
|
||||
@ -188,7 +200,7 @@ class QWenEmbed(Base):
|
||||
for e in resp["output"]["embeddings"]:
|
||||
embds[e["text_index"]] = e["embedding"]
|
||||
res.extend(embds)
|
||||
token_count += resp["usage"]["total_tokens"]
|
||||
token_count += self.total_token_count(resp)
|
||||
return np.array(res), token_count
|
||||
except Exception as e:
|
||||
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
||||
@ -203,7 +215,7 @@ class QWenEmbed(Base):
|
||||
text_type="query"
|
||||
)
|
||||
return np.array(resp["output"]["embeddings"][0]
|
||||
["embedding"]), resp["usage"]["total_tokens"]
|
||||
["embedding"]), self.total_token_count(resp)
|
||||
except Exception:
|
||||
raise Exception("Account abnormal. Please ensure it's on good standing to use QWen's "+self.model_name)
|
||||
return np.array([]), 0
|
||||
@ -229,13 +241,13 @@ class ZhipuEmbed(Base):
|
||||
res = self.client.embeddings.create(input=txt,
|
||||
model=self.model_name)
|
||||
arr.append(res.data[0].embedding)
|
||||
tks_num += res.usage.total_tokens
|
||||
tks_num += self.total_token_count(res)
|
||||
return np.array(arr), tks_num
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=text,
|
||||
model=self.model_name)
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
|
||||
|
||||
class OllamaEmbed(Base):
|
||||
@ -318,13 +330,13 @@ class XinferenceEmbed(Base):
|
||||
for i in range(0, len(texts), batch_size):
|
||||
res = self.client.embeddings.create(input=texts[i:i + batch_size], model=self.model_name)
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
total_tokens += res.usage.total_tokens
|
||||
total_tokens += self.total_token_count(res)
|
||||
return np.array(ress), total_tokens
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings.create(input=[text],
|
||||
model=self.model_name)
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
|
||||
|
||||
class YoudaoEmbed(Base):
|
||||
@ -383,7 +395,7 @@ class JinaEmbed(Base):
|
||||
}
|
||||
res = requests.post(self.base_url, headers=self.headers, json=data).json()
|
||||
ress.extend([d["embedding"] for d in res["data"]])
|
||||
token_count += res["usage"]["total_tokens"]
|
||||
token_count += self.total_token_count(res)
|
||||
return np.array(ress), token_count
|
||||
|
||||
def encode_queries(self, text):
|
||||
@ -447,13 +459,13 @@ class MistralEmbed(Base):
|
||||
res = self.client.embeddings(input=texts[i:i + batch_size],
|
||||
model=self.model_name)
|
||||
ress.extend([d.embedding for d in res.data])
|
||||
token_count += res.usage.total_tokens
|
||||
token_count += self.total_token_count(res)
|
||||
return np.array(ress), token_count
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.embeddings(input=[truncate(text, 8196)],
|
||||
model=self.model_name)
|
||||
return np.array(res.data[0].embedding), res.usage.total_tokens
|
||||
return np.array(res.data[0].embedding), self.total_token_count(res)
|
||||
|
||||
|
||||
class BedrockEmbed(Base):
|
||||
@ -565,7 +577,7 @@ class NvidiaEmbed(Base):
|
||||
}
|
||||
res = requests.post(self.base_url, headers=self.headers, json=payload).json()
|
||||
ress.extend([d["embedding"] for d in res["data"]])
|
||||
token_count += res["usage"]["total_tokens"]
|
||||
token_count += self.total_token_count(res)
|
||||
return np.array(ress), token_count
|
||||
|
||||
def encode_queries(self, text):
|
||||
@ -677,7 +689,7 @@ class SILICONFLOWEmbed(Base):
|
||||
if "data" not in res or not isinstance(res["data"], list) or len(res["data"]) != len(texts_batch):
|
||||
raise ValueError(f"SILICONFLOWEmbed.encode got invalid response from {self.base_url}")
|
||||
ress.extend([d["embedding"] for d in res["data"]])
|
||||
token_count += res["usage"]["total_tokens"]
|
||||
token_count += self.total_token_count(res)
|
||||
return np.array(ress), token_count
|
||||
|
||||
def encode_queries(self, text):
|
||||
@ -689,7 +701,7 @@ class SILICONFLOWEmbed(Base):
|
||||
res = requests.post(self.base_url, json=payload, headers=self.headers).json()
|
||||
if "data" not in res or not isinstance(res["data"], list) or len(res["data"])!= 1:
|
||||
raise ValueError(f"SILICONFLOWEmbed.encode_queries got invalid response from {self.base_url}")
|
||||
return np.array(res["data"][0]["embedding"]), res["usage"]["total_tokens"]
|
||||
return np.array(res["data"][0]["embedding"]), self.total_token_count(res)
|
||||
|
||||
|
||||
class ReplicateEmbed(Base):
|
||||
@ -727,14 +739,14 @@ class BaiduYiyanEmbed(Base):
|
||||
res = self.client.do(model=self.model_name, texts=texts).body
|
||||
return (
|
||||
np.array([r["embedding"] for r in res["data"]]),
|
||||
res["usage"]["total_tokens"],
|
||||
self.total_token_count(res),
|
||||
)
|
||||
|
||||
def encode_queries(self, text):
|
||||
res = self.client.do(model=self.model_name, texts=[text]).body
|
||||
return (
|
||||
np.array([r["embedding"] for r in res["data"]]),
|
||||
res["usage"]["total_tokens"],
|
||||
self.total_token_count(res),
|
||||
)
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user