mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
debug backend API for TAB 'search' (#2389)
### What problem does this PR solve? #2247 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
@ -224,6 +224,8 @@ class Dealer:
|
||||
def insert_citations(self, answer, chunks, chunk_v,
|
||||
embd_mdl, tkweight=0.1, vtweight=0.9):
|
||||
assert len(chunks) == len(chunk_v)
|
||||
if not chunks:
|
||||
return answer, set([])
|
||||
pieces = re.split(r"(```)", answer)
|
||||
if len(pieces) >= 3:
|
||||
i = 0
|
||||
@ -263,7 +265,7 @@ class Dealer:
|
||||
|
||||
ans_v, _ = embd_mdl.encode(pieces_)
|
||||
assert len(ans_v[0]) == len(chunk_v[0]), "The dimension of query and chunk do not match: {} vs. {}".format(
|
||||
len(ans_v[0]), len(chunk_v[0]))
|
||||
len(ans_v[0]), len(chunk_v[0]))
|
||||
|
||||
chunks_tks = [rag_tokenizer.tokenize(self.qryr.rmWWW(ck)).split(" ")
|
||||
for ck in chunks]
|
||||
@ -360,29 +362,33 @@ class Dealer:
|
||||
ranks = {"total": 0, "chunks": [], "doc_aggs": {}}
|
||||
if not question:
|
||||
return ranks
|
||||
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size,
|
||||
RERANK_PAGE_LIMIT = 3
|
||||
req = {"kb_ids": kb_ids, "doc_ids": doc_ids, "size": page_size*RERANK_PAGE_LIMIT,
|
||||
"question": question, "vector": True, "topk": top,
|
||||
"similarity": similarity_threshold,
|
||||
"available_int": 1}
|
||||
if page > RERANK_PAGE_LIMIT:
|
||||
req["page"] = page
|
||||
req["size"] = page_size
|
||||
sres = self.search(req, index_name(tenant_id), embd_mdl, highlight)
|
||||
ranks["total"] = sres.total
|
||||
|
||||
if rerank_mdl:
|
||||
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
||||
if page <= RERANK_PAGE_LIMIT:
|
||||
if rerank_mdl:
|
||||
sim, tsim, vsim = self.rerank_by_model(rerank_mdl,
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
||||
else:
|
||||
sim, tsim, vsim = self.rerank(
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
||||
idx = np.argsort(sim * -1)[(page-1)*page_size:page*page_size]
|
||||
else:
|
||||
sim, tsim, vsim = self.rerank(
|
||||
sres, question, 1 - vector_similarity_weight, vector_similarity_weight)
|
||||
idx = np.argsort(sim * -1)
|
||||
sim = tsim = vsim = [1]*len(sres.ids)
|
||||
idx = list(range(len(sres.ids)))
|
||||
|
||||
dim = len(sres.query_vector)
|
||||
start_idx = (page - 1) * page_size
|
||||
for i in idx:
|
||||
if sim[i] < similarity_threshold:
|
||||
break
|
||||
ranks["total"] += 1
|
||||
start_idx -= 1
|
||||
if start_idx >= 0:
|
||||
continue
|
||||
if len(ranks["chunks"]) >= page_size:
|
||||
if aggs:
|
||||
continue
|
||||
@ -406,7 +412,10 @@ class Dealer:
|
||||
"positions": sres.field[id].get("position_int", "").split("\t")
|
||||
}
|
||||
if highlight:
|
||||
d["highlight"] = rmSpace(sres.highlight[id])
|
||||
if id in sres.highlight:
|
||||
d["highlight"] = rmSpace(sres.highlight[id])
|
||||
else:
|
||||
d["highlight"] = d["content_with_weight"]
|
||||
if len(d["positions"]) % 5 == 0:
|
||||
poss = []
|
||||
for i in range(0, len(d["positions"]), 5):
|
||||
|
||||
Reference in New Issue
Block a user