mirror of
https://github.com/infiniflow/ragflow.git
synced 2026-01-30 23:26:36 +08:00
Feat: support tree structured deep-research policy. (#12559)
### What problem does this PR solve? #12558 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
@ -0,0 +1,126 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
import asyncio
|
||||
import logging
|
||||
from functools import partial
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from rag.prompts import kb_prompt
|
||||
from rag.prompts.generator import sufficiency_check, multi_queries_gen
|
||||
from rag.utils.tavily_conn import Tavily
|
||||
from timeit import default_timer as timer
|
||||
|
||||
|
||||
class TreeStructuredQueryDecompositionRetrieval:
|
||||
def __init__(self,
|
||||
chat_mdl: LLMBundle,
|
||||
prompt_config: dict,
|
||||
kb_retrieve: partial = None,
|
||||
kg_retrieve: partial = None
|
||||
):
|
||||
self.chat_mdl = chat_mdl
|
||||
self.prompt_config = prompt_config
|
||||
self._kb_retrieve = kb_retrieve
|
||||
self._kg_retrieve = kg_retrieve
|
||||
self._lock = asyncio.Lock()
|
||||
|
||||
def _retrieve_information(self, search_query):
|
||||
"""Retrieve information from different sources"""
|
||||
# 1. Knowledge base retrieval
|
||||
kbinfos = []
|
||||
try:
|
||||
kbinfos = self._kb_retrieve(question=search_query) if self._kb_retrieve else {"chunks": [], "doc_aggs": []}
|
||||
except Exception as e:
|
||||
logging.error(f"Knowledge base retrieval error: {e}")
|
||||
|
||||
# 2. Web retrieval (if Tavily API is configured)
|
||||
try:
|
||||
if self.prompt_config.get("tavily_api_key"):
|
||||
tav = Tavily(self.prompt_config["tavily_api_key"])
|
||||
tav_res = tav.retrieve_chunks(search_query)
|
||||
kbinfos["chunks"].extend(tav_res["chunks"])
|
||||
kbinfos["doc_aggs"].extend(tav_res["doc_aggs"])
|
||||
except Exception as e:
|
||||
logging.error(f"Web retrieval error: {e}")
|
||||
|
||||
# 3. Knowledge graph retrieval (if configured)
|
||||
try:
|
||||
if self.prompt_config.get("use_kg") and self._kg_retrieve:
|
||||
ck = self._kg_retrieve(question=search_query)
|
||||
if ck["content_with_weight"]:
|
||||
kbinfos["chunks"].insert(0, ck)
|
||||
except Exception as e:
|
||||
logging.error(f"Knowledge graph retrieval error: {e}")
|
||||
|
||||
return kbinfos
|
||||
|
||||
async def _async_update_chunk_info(self, chunk_info, kbinfos):
|
||||
async with self._lock:
|
||||
"""Update chunk information for citations"""
|
||||
if not chunk_info["chunks"]:
|
||||
# If this is the first retrieval, use the retrieval results directly
|
||||
for k in chunk_info.keys():
|
||||
chunk_info[k] = kbinfos[k]
|
||||
else:
|
||||
# Merge newly retrieved information, avoiding duplicates
|
||||
cids = [c["chunk_id"] for c in chunk_info["chunks"]]
|
||||
for c in kbinfos["chunks"]:
|
||||
if c["chunk_id"] not in cids:
|
||||
chunk_info["chunks"].append(c)
|
||||
|
||||
dids = [d["doc_id"] for d in chunk_info["doc_aggs"]]
|
||||
for d in kbinfos["doc_aggs"]:
|
||||
if d["doc_id"] not in dids:
|
||||
chunk_info["doc_aggs"].append(d)
|
||||
|
||||
async def research(self, chunk_info, question, query, depth=3, callback=None):
|
||||
if callback:
|
||||
await callback("<START_DEEP_RESEARCH>")
|
||||
await self._research(chunk_info, question, query, depth, callback)
|
||||
if callback:
|
||||
await callback("<END_DEEP_RESEARCH>")
|
||||
|
||||
async def _research(self, chunk_info, question, query, depth=3, callback=None):
|
||||
if depth == 0:
|
||||
#if callback:
|
||||
# await callback("Reach the max search depth.")
|
||||
return ""
|
||||
if callback:
|
||||
await callback(f"Searching by `{query}`...")
|
||||
st = timer()
|
||||
ret = self._retrieve_information(query)
|
||||
if callback:
|
||||
await callback("Retrieval %d results by %.1fms"%(len(ret["chunks"]), (timer()-st)*1000))
|
||||
await self._async_update_chunk_info(chunk_info, ret)
|
||||
ret = kb_prompt(ret, self.chat_mdl.max_length*0.5)
|
||||
|
||||
if callback:
|
||||
await callback("Checking the sufficiency for retrieved information.")
|
||||
suff = await sufficiency_check(self.chat_mdl, question, ret)
|
||||
if suff["is_sufficient"]:
|
||||
if callback:
|
||||
await callback("Yes, it's sufficient.")
|
||||
return ret
|
||||
|
||||
#if callback:
|
||||
# await callback("The retrieved information is not sufficient. Planing next steps...")
|
||||
succ_question_info = await multi_queries_gen(self.chat_mdl, question, query, suff["missing_information"], ret)
|
||||
if callback:
|
||||
await callback("Next step is to search for the following questions:\n" + "\n - ".join(step["question"] for step in succ_question_info["questions"]))
|
||||
steps = []
|
||||
for step in succ_question_info["questions"]:
|
||||
steps.append(asyncio.create_task(self._research(chunk_info, step["question"], step["query"], depth-1, callback)))
|
||||
results = await asyncio.gather(*steps, return_exceptions=True)
|
||||
return "\n".join([str(r) for r in results])
|
||||
Reference in New Issue
Block a user