mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
deepdoc use GPU if possible (#4618)
### What problem does this PR solve? deepdoc use GPU if possible ### Type of change - [x] Refactoring
This commit is contained in:
@ -14,6 +14,7 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import logging
|
||||
import copy
|
||||
import time
|
||||
import os
|
||||
@ -75,17 +76,32 @@ def load_model(model_dir, nm):
|
||||
options.execution_mode = ort.ExecutionMode.ORT_SEQUENTIAL
|
||||
options.intra_op_num_threads = 2
|
||||
options.inter_op_num_threads = 2
|
||||
if False and ort.get_device() == "GPU":
|
||||
|
||||
# https://github.com/microsoft/onnxruntime/issues/9509#issuecomment-951546580
|
||||
# Shrink GPU memory after execution
|
||||
run_options = ort.RunOptions()
|
||||
if ort.get_device() == "GPU":
|
||||
cuda_provider_options = {
|
||||
"device_id": 0, # Use specific GPU
|
||||
"gpu_mem_limit": 512 * 1024 * 1024, # Limit gpu memory
|
||||
"arena_extend_strategy": "kNextPowerOfTwo", # gpu memory allocation strategy
|
||||
}
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
options=options,
|
||||
providers=['CUDAExecutionProvider'])
|
||||
providers=['CUDAExecutionProvider'],
|
||||
provider_options=[cuda_provider_options]
|
||||
)
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "gpu:0")
|
||||
logging.info(f"TextRecognizer {nm} uses GPU")
|
||||
else:
|
||||
sess = ort.InferenceSession(
|
||||
model_file_path,
|
||||
options=options,
|
||||
providers=['CPUExecutionProvider'])
|
||||
return sess, sess.get_inputs()[0]
|
||||
run_options.add_run_config_entry("memory.enable_memory_arena_shrinkage", "cpu")
|
||||
logging.info(f"TextRecognizer {nm} uses CPU")
|
||||
return sess, sess.get_inputs()[0], run_options
|
||||
|
||||
|
||||
class TextRecognizer(object):
|
||||
@ -98,7 +114,7 @@ class TextRecognizer(object):
|
||||
"use_space_char": True
|
||||
}
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor, self.input_tensor = load_model(model_dir, 'rec')
|
||||
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'rec')
|
||||
|
||||
def resize_norm_img(self, img, max_wh_ratio):
|
||||
imgC, imgH, imgW = self.rec_image_shape
|
||||
@ -344,7 +360,7 @@ class TextRecognizer(object):
|
||||
input_dict[self.input_tensor.name] = norm_img_batch
|
||||
for i in range(100000):
|
||||
try:
|
||||
outputs = self.predictor.run(None, input_dict)
|
||||
outputs = self.predictor.run(None, input_dict, self.run_options)
|
||||
break
|
||||
except Exception as e:
|
||||
if i >= 3:
|
||||
@ -383,7 +399,7 @@ class TextDetector(object):
|
||||
"unclip_ratio": 1.5, "use_dilation": False, "score_mode": "fast", "box_type": "quad"}
|
||||
|
||||
self.postprocess_op = build_post_process(postprocess_params)
|
||||
self.predictor, self.input_tensor = load_model(model_dir, 'det')
|
||||
self.predictor, self.input_tensor, self.run_options = load_model(model_dir, 'det')
|
||||
|
||||
img_h, img_w = self.input_tensor.shape[2:]
|
||||
if isinstance(img_h, str) or isinstance(img_w, str):
|
||||
@ -456,7 +472,7 @@ class TextDetector(object):
|
||||
input_dict[self.input_tensor.name] = img
|
||||
for i in range(100000):
|
||||
try:
|
||||
outputs = self.predictor.run(None, input_dict)
|
||||
outputs = self.predictor.run(None, input_dict, self.run_options)
|
||||
break
|
||||
except Exception as e:
|
||||
if i >= 3:
|
||||
|
||||
Reference in New Issue
Block a user