mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
organize chunks by document in the prompt (#3925)
### What problem does this PR solve?
This PR organize chunks in the prompt by document and indicate what is
the name of the document in this way
```
Document: {doc_name} \nContains the following relevant fragments:
chunk1
chunk2
chunk3
Document: {doc_name} \nContains the following relevant fragments:
chunk4
chunk5
```
Maybe can be a baseline to add metadata to the documents.
This allow in my case to improve llm context about the orgin of the
information.
### Type of change
- [X] New Feature (non-breaking change which adds functionality)
Co-authored-by: Miguel <your-noreply-github-email>
This commit is contained in:
@ -195,7 +195,32 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
dialog.vector_similarity_weight,
|
||||
doc_ids=attachments,
|
||||
top=dialog.top_k, aggs=False, rerank_mdl=rerank_mdl)
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
|
||||
# Group chunks by document ID
|
||||
doc_chunks = {}
|
||||
for ck in kbinfos["chunks"]:
|
||||
doc_id = ck["doc_id"]
|
||||
if doc_id not in doc_chunks:
|
||||
doc_chunks[doc_id] = []
|
||||
doc_chunks[doc_id].append(ck["content_with_weight"])
|
||||
|
||||
# Create knowledges list with grouped chunks
|
||||
knowledges = []
|
||||
for doc_id, chunks in doc_chunks.items():
|
||||
# Find the corresponding document name
|
||||
doc_name = next((d["doc_name"] for d in kbinfos.get("doc_aggs", []) if d["doc_id"] == doc_id), doc_id)
|
||||
|
||||
# Create a header for the document
|
||||
doc_knowledge = f"Document: {doc_name} \nContains the following relevant fragments:\n"
|
||||
|
||||
# Add numbered fragments
|
||||
for i, chunk in enumerate(chunks, 1):
|
||||
doc_knowledge += f"{i}. {chunk}\n"
|
||||
|
||||
knowledges.append(doc_knowledge)
|
||||
|
||||
|
||||
|
||||
logging.debug(
|
||||
"{}->{}".format(" ".join(questions), "\n->".join(knowledges)))
|
||||
retrieval_tm = timer()
|
||||
@ -592,12 +617,40 @@ def ask(question, kb_ids, tenant_id):
|
||||
knowledges = [ck["content_with_weight"] for ck in kbinfos["chunks"]]
|
||||
|
||||
used_token_count = 0
|
||||
chunks_num = 0
|
||||
for i, c in enumerate(knowledges):
|
||||
used_token_count += num_tokens_from_string(c)
|
||||
if max_tokens * 0.97 < used_token_count:
|
||||
knowledges = knowledges[:i]
|
||||
chunks_num = chunks_num + 1
|
||||
break
|
||||
|
||||
# Group chunks by document ID
|
||||
doc_chunks = {}
|
||||
counter_chunks = 0
|
||||
for ck in kbinfos["chunks"]:
|
||||
if counter_chunks < chunks_num:
|
||||
counter_chunks = counter_chunks + 1
|
||||
doc_id = ck["doc_id"]
|
||||
if doc_id not in doc_chunks:
|
||||
doc_chunks[doc_id] = []
|
||||
doc_chunks[doc_id].append(ck["content_with_weight"])
|
||||
|
||||
# Create knowledges list with grouped chunks
|
||||
knowledges = []
|
||||
for doc_id, chunks in doc_chunks.items():
|
||||
# Find the corresponding document name
|
||||
doc_name = next((d["doc_name"] for d in kbinfos.get("doc_aggs", []) if d["doc_id"] == doc_id), doc_id)
|
||||
|
||||
# Create a header for the document
|
||||
doc_knowledge = f"Document: {doc_name} \nContains the following relevant fragments:\n"
|
||||
|
||||
# Add numbered fragments
|
||||
for i, chunk in enumerate(chunks, 1):
|
||||
doc_knowledge += f"{i}. {chunk}\n"
|
||||
|
||||
knowledges.append(doc_knowledge)
|
||||
|
||||
prompt = """
|
||||
Role: You're a smart assistant. Your name is Miss R.
|
||||
Task: Summarize the information from knowledge bases and answer user's question.
|
||||
|
||||
Reference in New Issue
Block a user