remove unused codes, seperate layout detection out as a new api. Add new rag methed 'table' (#55)

This commit is contained in:
KevinHuSh
2024-02-05 18:08:17 +08:00
committed by GitHub
parent f305776217
commit 407b2523b6
33 changed files with 306 additions and 505 deletions

View File

@ -3,7 +3,7 @@ import random
import re
import numpy as np
from rag.parser import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table, \
hierarchical_merge, make_colon_as_title, naive_merge
hierarchical_merge, make_colon_as_title, naive_merge, random_choices
from rag.nlp import huqie
from rag.parser.docx_parser import HuDocxParser
from rag.parser.pdf_parser import HuParser
@ -51,7 +51,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
doc_parser = HuDocxParser()
# TODO: table of contents need to be removed
sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page)
remove_contents_table(sections, eng=is_english(random.choices([t for t,_ in sections], k=200)))
remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
@ -67,20 +67,20 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
l = f.readline()
if not l:break
txt += l
sections = txt.split("\n")
sections = txt.split("\n")
sections = [(l,"") for l in sections if l]
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200)))
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
make_colon_as_title(sections)
bull = bullets_category([t for t in random.choices([t for t,_ in sections], k=100)])
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
sections = [t for t, _ in sections]
# is it English
eng = is_english(random.choices(sections, k=218))
eng = is_english(random_choices(sections, k=218))
res = []
# add tables

View File

@ -86,7 +86,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
l = f.readline()
if not l:break
txt += l
sections = txt.split("\n")
sections = txt.split("\n")
sections = txt.split("\n")
sections = [l for l in sections if l]
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")

View File

@ -52,7 +52,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
l = f.readline()
if not l:break
txt += l
sections = txt.split("\n")
sections = txt.split("\n")
sections = [(l,"") for l in sections if l]
callback(0.8, "Finish parsing.")
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")

View File

@ -1,6 +1,9 @@
import copy
import re
from collections import Counter
from api.db import ParserType
from rag.cv.ppdetection import PPDet
from rag.parser import tokenize
from rag.nlp import huqie
from rag.parser.pdf_parser import HuParser
@ -9,6 +12,10 @@ from rag.utils import num_tokens_from_string
class Pdf(HuParser):
def __init__(self):
self.model_speciess = ParserType.PAPER.value
super().__init__()
def __call__(self, filename, binary=None, from_page=0,
to_page=100000, zoomin=3, callback=None):
self.__images__(
@ -63,6 +70,15 @@ class Pdf(HuParser):
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
txt.lower().strip())
if from_page > 0:
return {
"title":"",
"authors": "",
"abstract": "",
"lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
re.match(r"(text|title)", b.get("layoutno", "text"))],
"tables": tbls
}
# get title and authors
title = ""
authors = []
@ -115,18 +131,13 @@ class Pdf(HuParser):
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
pdf_parser = None
paper = {}
if re.search(r"\.pdf$", filename, re.IGNORECASE):
pdf_parser = Pdf()
paper = pdf_parser(filename if not binary else binary,
from_page=from_page, to_page=to_page, callback=callback)
else: raise NotImplementedError("file type not supported yet(pdf supported)")
doc = {
"docnm_kwd": paper["title"] if paper["title"] else filename,
"authors_tks": paper["authors"]
}
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
doc = {"docnm_kwd": filename, "authors_tks": paper["authors"],
"title_tks": huqie.qie(paper["title"] if paper["title"] else filename)}
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
doc["authors_sm_tks"] = huqie.qieqie(doc["authors_tks"])
# is it English

View File

@ -3,7 +3,7 @@ import re
from io import BytesIO
from nltk import word_tokenize
from openpyxl import load_workbook
from rag.parser import is_english
from rag.parser import is_english, random_choices
from rag.nlp import huqie, stemmer
@ -33,9 +33,9 @@ class Excel(object):
if len(res) % 999 == 0:
callback(len(res)*0.6/total, ("Extract Q&A: {}".format(len(res)) + (f"{len(fails)} failure, line: %s..."%(",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
callback(0.6, ("Extract Q&A: {}. ".format(len(res)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
self.is_english = is_english([rmPrefix(q) for q, _ in random.choices(res, k=30) if len(q)>1])
self.is_english = is_english([rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q)>1])
return res

170
rag/app/table.py Normal file
View File

@ -0,0 +1,170 @@
import copy
import random
import re
from io import BytesIO
from xpinyin import Pinyin
import numpy as np
import pandas as pd
from nltk import word_tokenize
from openpyxl import load_workbook
from dateutil.parser import parse as datetime_parse
from rag.parser import is_english, tokenize
from rag.nlp import huqie, stemmer
class Excel(object):
def __call__(self, fnm, binary=None, callback=None):
if not binary:
wb = load_workbook(fnm)
else:
wb = load_workbook(BytesIO(binary))
total = 0
for sheetname in wb.sheetnames:
total += len(list(wb[sheetname].rows))
res, fails, done = [], [], 0
for sheetname in wb.sheetnames:
ws = wb[sheetname]
rows = list(ws.rows)
headers = [cell.value for cell in rows[0]]
missed = set([i for i,h in enumerate(headers) if h is None])
headers = [cell.value for i,cell in enumerate(rows[0]) if i not in missed]
data = []
for i, r in enumerate(rows[1:]):
row = [cell.value for ii,cell in enumerate(r) if ii not in missed]
if len(row) != len(headers):
fails.append(str(i))
continue
data.append(row)
done += 1
if done % 999 == 0:
callback(done * 0.6/total, ("Extract records: {}".format(len(res)) + (f"{len(fails)} failure({sheetname}), line: %s..."%(",".join(fails[:3])) if fails else "")))
res.append(pd.DataFrame(np.array(data), columns=headers))
callback(0.6, ("Extract records: {}. ".format(done) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
return res
def trans_datatime(s):
try:
return datetime_parse(s.strip()).strftime("%Y-%m-%dT%H:%M:%S")
except Exception as e:
pass
def trans_bool(s):
if re.match(r"(true|yes|是)$", str(s).strip(), flags=re.IGNORECASE): return ["yes", ""]
if re.match(r"(false|no|否)$", str(s).strip(), flags=re.IGNORECASE): return ["no", ""]
def column_data_type(arr):
uni = len(set([a for a in arr if a is not None]))
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
trans = {t:f for f,t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
for a in arr:
if a is None:continue
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
counts["int"] += 1
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
counts["float"] += 1
elif re.match(r"(true|false|yes|no|是|否)$", str(a), flags=re.IGNORECASE):
counts["bool"] += 1
elif trans_datatime(str(a)):
counts["datetime"] += 1
else: counts["text"] += 1
counts = sorted(counts.items(), key=lambda x: x[1]*-1)
ty = counts[0][0]
for i in range(len(arr)):
if arr[i] is None:continue
try:
arr[i] = trans[ty](str(arr[i]))
except Exception as e:
arr[i] = None
if ty == "text":
if len(arr) > 128 and uni/len(arr) < 0.1:
ty = "keyword"
return arr, ty
def chunk(filename, binary=None, callback=None, **kwargs):
dfs = []
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
excel_parser = Excel()
dfs = excel_parser(filename, binary, callback)
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
callback(0.1, "Start to parse.")
txt = ""
if binary:
txt = binary.decode("utf-8")
else:
with open(filename, "r") as f:
while True:
l = f.readline()
if not l: break
txt += l
lines = txt.split("\n")
fails = []
headers = lines[0].split(kwargs.get("delimiter", "\t"))
rows = []
for i, line in enumerate(lines[1:]):
row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
if len(row) != len(headers):
fails.append(str(i))
continue
rows.append(row)
if len(rows) % 999 == 0:
callback(len(rows) * 0.6 / len(lines), ("Extract records: {}".format(len(rows)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
callback(0.6, ("Extract records: {}".format(len(rows)) + (
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
else: raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
res = []
PY = Pinyin()
fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
for df in dfs:
for n in ["id", "_id", "index", "idx"]:
if n in df.columns:del df[n]
clmns = df.columns.values
txts = list(copy.deepcopy(clmns))
py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
clmn_tys = []
for j in range(len(clmns)):
cln,ty = column_data_type(df[clmns[j]])
clmn_tys.append(ty)
df[clmns[j]] = cln
if ty == "text": txts.extend([str(c) for c in cln if c])
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
# TODO: set this column map to KB parser configuration
eng = is_english(txts)
for ii,row in df.iterrows():
d = {}
row_txt = []
for j in range(len(clmns)):
if row[clmns[j]] is None:continue
fld = clmns_map[j][0]
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
if not row_txt:continue
tokenize(d, "; ".join(row_txt), eng)
print(d)
res.append(d)
callback(0.6, "")
return res
if __name__== "__main__":
import sys
def dummy(a, b):
pass
chunk(sys.argv[1], callback=dummy)