mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 12:32:30 +08:00
remove unused codes, seperate layout detection out as a new api. Add new rag methed 'table' (#55)
This commit is contained in:
@ -3,7 +3,7 @@ import random
|
||||
import re
|
||||
import numpy as np
|
||||
from rag.parser import bullets_category, BULLET_PATTERN, is_english, tokenize, remove_contents_table, \
|
||||
hierarchical_merge, make_colon_as_title, naive_merge
|
||||
hierarchical_merge, make_colon_as_title, naive_merge, random_choices
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.docx_parser import HuDocxParser
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
@ -51,7 +51,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
doc_parser = HuDocxParser()
|
||||
# TODO: table of contents need to be removed
|
||||
sections, tbls = doc_parser(binary if binary else filename, from_page=from_page, to_page=to_page)
|
||||
remove_contents_table(sections, eng=is_english(random.choices([t for t,_ in sections], k=200)))
|
||||
remove_contents_table(sections, eng=is_english(random_choices([t for t,_ in sections], k=200)))
|
||||
callback(0.8, "Finish parsing.")
|
||||
elif re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
@ -67,20 +67,20 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
l = f.readline()
|
||||
if not l:break
|
||||
txt += l
|
||||
sections = txt.split("\n")
|
||||
sections = txt.split("\n")
|
||||
sections = [(l,"") for l in sections if l]
|
||||
remove_contents_table(sections, eng = is_english(random.choices([t for t,_ in sections], k=200)))
|
||||
remove_contents_table(sections, eng = is_english(random_choices([t for t,_ in sections], k=200)))
|
||||
callback(0.8, "Finish parsing.")
|
||||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
make_colon_as_title(sections)
|
||||
bull = bullets_category([t for t in random.choices([t for t,_ in sections], k=100)])
|
||||
bull = bullets_category([t for t in random_choices([t for t,_ in sections], k=100)])
|
||||
if bull >= 0: cks = hierarchical_merge(bull, sections, 3)
|
||||
else: cks = naive_merge(sections, kwargs.get("chunk_token_num", 256), kwargs.get("delimer", "\n。;!?"))
|
||||
|
||||
sections = [t for t, _ in sections]
|
||||
# is it English
|
||||
eng = is_english(random.choices(sections, k=218))
|
||||
eng = is_english(random_choices(sections, k=218))
|
||||
|
||||
res = []
|
||||
# add tables
|
||||
|
||||
@ -86,7 +86,8 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
l = f.readline()
|
||||
if not l:break
|
||||
txt += l
|
||||
sections = txt.split("\n")
|
||||
sections = txt.split("\n")
|
||||
sections = txt.split("\n")
|
||||
sections = [l for l in sections if l]
|
||||
callback(0.8, "Finish parsing.")
|
||||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
@ -52,7 +52,7 @@ def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **k
|
||||
l = f.readline()
|
||||
if not l:break
|
||||
txt += l
|
||||
sections = txt.split("\n")
|
||||
sections = txt.split("\n")
|
||||
sections = [(l,"") for l in sections if l]
|
||||
callback(0.8, "Finish parsing.")
|
||||
else: raise NotImplementedError("file type not supported yet(docx, pdf, txt supported)")
|
||||
|
||||
@ -1,6 +1,9 @@
|
||||
import copy
|
||||
import re
|
||||
from collections import Counter
|
||||
|
||||
from api.db import ParserType
|
||||
from rag.cv.ppdetection import PPDet
|
||||
from rag.parser import tokenize
|
||||
from rag.nlp import huqie
|
||||
from rag.parser.pdf_parser import HuParser
|
||||
@ -9,6 +12,10 @@ from rag.utils import num_tokens_from_string
|
||||
|
||||
|
||||
class Pdf(HuParser):
|
||||
def __init__(self):
|
||||
self.model_speciess = ParserType.PAPER.value
|
||||
super().__init__()
|
||||
|
||||
def __call__(self, filename, binary=None, from_page=0,
|
||||
to_page=100000, zoomin=3, callback=None):
|
||||
self.__images__(
|
||||
@ -63,6 +70,15 @@ class Pdf(HuParser):
|
||||
"[0-9. 一、i]*(introduction|abstract|摘要|引言|keywords|key words|关键词|background|背景|目录|前言|contents)",
|
||||
txt.lower().strip())
|
||||
|
||||
if from_page > 0:
|
||||
return {
|
||||
"title":"",
|
||||
"authors": "",
|
||||
"abstract": "",
|
||||
"lines": [(b["text"] + self._line_tag(b, zoomin), b.get("layoutno", "")) for b in self.boxes[i:] if
|
||||
re.match(r"(text|title)", b.get("layoutno", "text"))],
|
||||
"tables": tbls
|
||||
}
|
||||
# get title and authors
|
||||
title = ""
|
||||
authors = []
|
||||
@ -115,18 +131,13 @@ class Pdf(HuParser):
|
||||
|
||||
def chunk(filename, binary=None, from_page=0, to_page=100000, callback=None, **kwargs):
|
||||
pdf_parser = None
|
||||
paper = {}
|
||||
|
||||
if re.search(r"\.pdf$", filename, re.IGNORECASE):
|
||||
pdf_parser = Pdf()
|
||||
paper = pdf_parser(filename if not binary else binary,
|
||||
from_page=from_page, to_page=to_page, callback=callback)
|
||||
else: raise NotImplementedError("file type not supported yet(pdf supported)")
|
||||
doc = {
|
||||
"docnm_kwd": paper["title"] if paper["title"] else filename,
|
||||
"authors_tks": paper["authors"]
|
||||
}
|
||||
doc["title_tks"] = huqie.qie(re.sub(r"\.[a-zA-Z]+$", "", doc["docnm_kwd"]))
|
||||
doc = {"docnm_kwd": filename, "authors_tks": paper["authors"],
|
||||
"title_tks": huqie.qie(paper["title"] if paper["title"] else filename)}
|
||||
doc["title_sm_tks"] = huqie.qieqie(doc["title_tks"])
|
||||
doc["authors_sm_tks"] = huqie.qieqie(doc["authors_tks"])
|
||||
# is it English
|
||||
|
||||
@ -3,7 +3,7 @@ import re
|
||||
from io import BytesIO
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from rag.parser import is_english
|
||||
from rag.parser import is_english, random_choices
|
||||
from rag.nlp import huqie, stemmer
|
||||
|
||||
|
||||
@ -33,9 +33,9 @@ class Excel(object):
|
||||
if len(res) % 999 == 0:
|
||||
callback(len(res)*0.6/total, ("Extract Q&A: {}".format(len(res)) + (f"{len(fails)} failure, line: %s..."%(",".join(fails[:3])) if fails else "")))
|
||||
|
||||
callback(0.6, ("Extract Q&A: {}".format(len(res)) + (
|
||||
callback(0.6, ("Extract Q&A: {}. ".format(len(res)) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
self.is_english = is_english([rmPrefix(q) for q, _ in random.choices(res, k=30) if len(q)>1])
|
||||
self.is_english = is_english([rmPrefix(q) for q, _ in random_choices(res, k=30) if len(q)>1])
|
||||
return res
|
||||
|
||||
|
||||
|
||||
170
rag/app/table.py
Normal file
170
rag/app/table.py
Normal file
@ -0,0 +1,170 @@
|
||||
import copy
|
||||
import random
|
||||
import re
|
||||
from io import BytesIO
|
||||
from xpinyin import Pinyin
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from nltk import word_tokenize
|
||||
from openpyxl import load_workbook
|
||||
from dateutil.parser import parse as datetime_parse
|
||||
from rag.parser import is_english, tokenize
|
||||
from rag.nlp import huqie, stemmer
|
||||
|
||||
|
||||
class Excel(object):
|
||||
def __call__(self, fnm, binary=None, callback=None):
|
||||
if not binary:
|
||||
wb = load_workbook(fnm)
|
||||
else:
|
||||
wb = load_workbook(BytesIO(binary))
|
||||
total = 0
|
||||
for sheetname in wb.sheetnames:
|
||||
total += len(list(wb[sheetname].rows))
|
||||
|
||||
res, fails, done = [], [], 0
|
||||
for sheetname in wb.sheetnames:
|
||||
ws = wb[sheetname]
|
||||
rows = list(ws.rows)
|
||||
headers = [cell.value for cell in rows[0]]
|
||||
missed = set([i for i,h in enumerate(headers) if h is None])
|
||||
headers = [cell.value for i,cell in enumerate(rows[0]) if i not in missed]
|
||||
data = []
|
||||
for i, r in enumerate(rows[1:]):
|
||||
row = [cell.value for ii,cell in enumerate(r) if ii not in missed]
|
||||
if len(row) != len(headers):
|
||||
fails.append(str(i))
|
||||
continue
|
||||
data.append(row)
|
||||
done += 1
|
||||
if done % 999 == 0:
|
||||
callback(done * 0.6/total, ("Extract records: {}".format(len(res)) + (f"{len(fails)} failure({sheetname}), line: %s..."%(",".join(fails[:3])) if fails else "")))
|
||||
res.append(pd.DataFrame(np.array(data), columns=headers))
|
||||
|
||||
callback(0.6, ("Extract records: {}. ".format(done) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
return res
|
||||
|
||||
|
||||
def trans_datatime(s):
|
||||
try:
|
||||
return datetime_parse(s.strip()).strftime("%Y-%m-%dT%H:%M:%S")
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
|
||||
def trans_bool(s):
|
||||
if re.match(r"(true|yes|是)$", str(s).strip(), flags=re.IGNORECASE): return ["yes", "是"]
|
||||
if re.match(r"(false|no|否)$", str(s).strip(), flags=re.IGNORECASE): return ["no", "否"]
|
||||
|
||||
|
||||
def column_data_type(arr):
|
||||
uni = len(set([a for a in arr if a is not None]))
|
||||
counts = {"int": 0, "float": 0, "text": 0, "datetime": 0, "bool": 0}
|
||||
trans = {t:f for f,t in [(int, "int"), (float, "float"), (trans_datatime, "datetime"), (trans_bool, "bool"), (str, "text")]}
|
||||
for a in arr:
|
||||
if a is None:continue
|
||||
if re.match(r"[+-]?[0-9]+(\.0+)?$", str(a).replace("%%", "")):
|
||||
counts["int"] += 1
|
||||
elif re.match(r"[+-]?[0-9.]+$", str(a).replace("%%", "")):
|
||||
counts["float"] += 1
|
||||
elif re.match(r"(true|false|yes|no|是|否)$", str(a), flags=re.IGNORECASE):
|
||||
counts["bool"] += 1
|
||||
elif trans_datatime(str(a)):
|
||||
counts["datetime"] += 1
|
||||
else: counts["text"] += 1
|
||||
counts = sorted(counts.items(), key=lambda x: x[1]*-1)
|
||||
ty = counts[0][0]
|
||||
for i in range(len(arr)):
|
||||
if arr[i] is None:continue
|
||||
try:
|
||||
arr[i] = trans[ty](str(arr[i]))
|
||||
except Exception as e:
|
||||
arr[i] = None
|
||||
if ty == "text":
|
||||
if len(arr) > 128 and uni/len(arr) < 0.1:
|
||||
ty = "keyword"
|
||||
return arr, ty
|
||||
|
||||
|
||||
def chunk(filename, binary=None, callback=None, **kwargs):
|
||||
dfs = []
|
||||
if re.search(r"\.xlsx?$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
excel_parser = Excel()
|
||||
dfs = excel_parser(filename, binary, callback)
|
||||
elif re.search(r"\.(txt|csv)$", filename, re.IGNORECASE):
|
||||
callback(0.1, "Start to parse.")
|
||||
txt = ""
|
||||
if binary:
|
||||
txt = binary.decode("utf-8")
|
||||
else:
|
||||
with open(filename, "r") as f:
|
||||
while True:
|
||||
l = f.readline()
|
||||
if not l: break
|
||||
txt += l
|
||||
lines = txt.split("\n")
|
||||
fails = []
|
||||
headers = lines[0].split(kwargs.get("delimiter", "\t"))
|
||||
rows = []
|
||||
for i, line in enumerate(lines[1:]):
|
||||
row = [l for l in line.split(kwargs.get("delimiter", "\t"))]
|
||||
if len(row) != len(headers):
|
||||
fails.append(str(i))
|
||||
continue
|
||||
rows.append(row)
|
||||
if len(rows) % 999 == 0:
|
||||
callback(len(rows) * 0.6 / len(lines), ("Extract records: {}".format(len(rows)) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
|
||||
callback(0.6, ("Extract records: {}".format(len(rows)) + (
|
||||
f"{len(fails)} failure, line: %s..." % (",".join(fails[:3])) if fails else "")))
|
||||
|
||||
dfs = [pd.DataFrame(np.array(rows), columns=headers)]
|
||||
|
||||
else: raise NotImplementedError("file type not supported yet(excel, text, csv supported)")
|
||||
|
||||
res = []
|
||||
PY = Pinyin()
|
||||
fieds_map = {"text": "_tks", "int": "_int", "keyword": "_kwd", "float": "_flt", "datetime": "_dt", "bool": "_kwd"}
|
||||
for df in dfs:
|
||||
for n in ["id", "_id", "index", "idx"]:
|
||||
if n in df.columns:del df[n]
|
||||
clmns = df.columns.values
|
||||
txts = list(copy.deepcopy(clmns))
|
||||
py_clmns = [PY.get_pinyins(n)[0].replace("-", "_") for n in clmns]
|
||||
clmn_tys = []
|
||||
for j in range(len(clmns)):
|
||||
cln,ty = column_data_type(df[clmns[j]])
|
||||
clmn_tys.append(ty)
|
||||
df[clmns[j]] = cln
|
||||
if ty == "text": txts.extend([str(c) for c in cln if c])
|
||||
clmns_map = [(py_clmns[j] + fieds_map[clmn_tys[j]], clmns[j]) for i in range(len(clmns))]
|
||||
# TODO: set this column map to KB parser configuration
|
||||
|
||||
eng = is_english(txts)
|
||||
for ii,row in df.iterrows():
|
||||
d = {}
|
||||
row_txt = []
|
||||
for j in range(len(clmns)):
|
||||
if row[clmns[j]] is None:continue
|
||||
fld = clmns_map[j][0]
|
||||
d[fld] = row[clmns[j]] if clmn_tys[j] != "text" else huqie.qie(row[clmns[j]])
|
||||
row_txt.append("{}:{}".format(clmns[j], row[clmns[j]]))
|
||||
if not row_txt:continue
|
||||
tokenize(d, "; ".join(row_txt), eng)
|
||||
print(d)
|
||||
res.append(d)
|
||||
callback(0.6, "")
|
||||
|
||||
return res
|
||||
|
||||
|
||||
|
||||
if __name__== "__main__":
|
||||
import sys
|
||||
def dummy(a, b):
|
||||
pass
|
||||
chunk(sys.argv[1], callback=dummy)
|
||||
|
||||
@ -67,7 +67,7 @@ class Dealer:
|
||||
ps = int(req.get("size", 1000))
|
||||
src = req.get("fields", ["docnm_kwd", "content_ltks", "kb_id", "img_id",
|
||||
"image_id", "doc_id", "q_512_vec", "q_768_vec",
|
||||
"q_1024_vec", "q_1536_vec", "available_int"])
|
||||
"q_1024_vec", "q_1536_vec", "available_int", "content_with_weight"])
|
||||
|
||||
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
|
||||
s = s.highlight("content_ltks")
|
||||
@ -234,7 +234,7 @@ class Dealer:
|
||||
sres.field[i].get("q_%d_vec" % len(sres.query_vector), "\t".join(["0"] * len(sres.query_vector)))) for i in sres.ids]
|
||||
if not ins_embd:
|
||||
return [], [], []
|
||||
ins_tw = [huqie.qie(sres.field[i][cfield]).split(" ")
|
||||
ins_tw = [sres.field[i][cfield].split(" ")
|
||||
for i in sres.ids]
|
||||
sim, tksim, vtsim = self.qryr.hybrid_similarity(sres.query_vector,
|
||||
ins_embd,
|
||||
@ -281,6 +281,7 @@ class Dealer:
|
||||
d = {
|
||||
"chunk_id": id,
|
||||
"content_ltks": sres.field[id]["content_ltks"],
|
||||
"content_with_weight": sres.field[id]["content_with_weight"],
|
||||
"doc_id": sres.field[id]["doc_id"],
|
||||
"docnm_kwd": dnm,
|
||||
"kb_id": sres.field[id]["kb_id"],
|
||||
|
||||
@ -1,4 +1,5 @@
|
||||
import copy
|
||||
import random
|
||||
|
||||
from .pdf_parser import HuParser as PdfParser
|
||||
from .docx_parser import HuDocxParser as DocxParser
|
||||
@ -38,6 +39,9 @@ BULLET_PATTERN = [[
|
||||
]
|
||||
]
|
||||
|
||||
def random_choices(arr, k):
|
||||
k = min(len(arr), k)
|
||||
return random.choices(arr, k=k)
|
||||
|
||||
def bullets_category(sections):
|
||||
global BULLET_PATTERN
|
||||
|
||||
@ -1,7 +1,10 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import os
|
||||
import random
|
||||
from functools import partial
|
||||
|
||||
import fitz
|
||||
import requests
|
||||
import xgboost as xgb
|
||||
from io import BytesIO
|
||||
import torch
|
||||
@ -10,13 +13,14 @@ import pdfplumber
|
||||
import logging
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
|
||||
from api.db import ParserType
|
||||
from rag.nlp import huqie
|
||||
from collections import Counter
|
||||
from copy import deepcopy
|
||||
from rag.cv.table_recognize import TableTransformer
|
||||
from rag.cv.ppdetection import PPDet
|
||||
from huggingface_hub import hf_hub_download
|
||||
|
||||
|
||||
logging.getLogger("pdfminer").setLevel(logging.WARNING)
|
||||
|
||||
|
||||
@ -25,8 +29,10 @@ class HuParser:
|
||||
from paddleocr import PaddleOCR
|
||||
logging.getLogger("ppocr").setLevel(logging.ERROR)
|
||||
self.ocr = PaddleOCR(use_angle_cls=False, lang="ch")
|
||||
self.layouter = PPDet("/data/newpeak/medical-gpt/res/ppdet")
|
||||
self.tbl_det = PPDet("/data/newpeak/medical-gpt/res/ppdet.tbl")
|
||||
if not hasattr(self, "model_speciess"):
|
||||
self.model_speciess = ParserType.GENERAL.value
|
||||
self.layouter = partial(self.__remote_call, self.model_speciess)
|
||||
self.tbl_det = partial(self.__remote_call, "table_component")
|
||||
|
||||
self.updown_cnt_mdl = xgb.Booster()
|
||||
if torch.cuda.is_available():
|
||||
@ -45,6 +51,38 @@ class HuParser:
|
||||
|
||||
"""
|
||||
|
||||
def __remote_call(self, species, images, thr=0.7):
|
||||
url = os.environ.get("INFINIFLOW_SERVER")
|
||||
if not url:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_SERVER'")
|
||||
token = os.environ.get("INFINIFLOW_TOKEN")
|
||||
if not token:raise EnvironmentError("Please set environment variable: 'INFINIFLOW_TOKEN'")
|
||||
|
||||
def convert_image_to_bytes(PILimage):
|
||||
image = BytesIO()
|
||||
PILimage.save(image, format='png')
|
||||
image.seek(0)
|
||||
return image.getvalue()
|
||||
|
||||
images = [convert_image_to_bytes(img) for img in images]
|
||||
|
||||
def remote_call():
|
||||
nonlocal images, thr
|
||||
res = requests.post(url+"/v1/layout/detect/"+species, files=[("image", img) for img in images], data={"threashold": thr},
|
||||
headers={"Authorization": token}, timeout=len(images) * 10)
|
||||
res = res.json()
|
||||
if res["retcode"] != 0: raise RuntimeError(res["retmsg"])
|
||||
return res["data"]
|
||||
|
||||
for _ in range(3):
|
||||
try:
|
||||
return remote_call()
|
||||
except RuntimeError as e:
|
||||
raise e
|
||||
except Exception as e:
|
||||
logging.error("layout_predict:"+str(e))
|
||||
return remote_call()
|
||||
|
||||
|
||||
def __char_width(self, c):
|
||||
return (c["x1"] - c["x0"]) // len(c["text"])
|
||||
|
||||
@ -344,7 +382,7 @@ class HuParser:
|
||||
return layouts
|
||||
|
||||
def __table_paddle(self, images):
|
||||
tbls = self.tbl_det([np.array(img) for img in images], thr=0.5)
|
||||
tbls = self.tbl_det(images, thr=0.5)
|
||||
res = []
|
||||
# align left&right for rows, align top&bottom for columns
|
||||
for tbl in tbls:
|
||||
@ -522,7 +560,7 @@ class HuParser:
|
||||
assert len(self.page_images) == len(self.boxes)
|
||||
# Tag layout type
|
||||
boxes = []
|
||||
layouts = self.layouter([np.array(img) for img in self.page_images])
|
||||
layouts = self.layouter(self.page_images)
|
||||
assert len(self.page_images) == len(layouts)
|
||||
for pn, lts in enumerate(layouts):
|
||||
bxs = self.boxes[pn]
|
||||
@ -1705,7 +1743,8 @@ class HuParser:
|
||||
self.__ocr_paddle(i + 1, img, chars, zoomin)
|
||||
|
||||
if not self.is_english and not any([c for c in self.page_chars]) and self.boxes:
|
||||
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices([b for bxs in self.boxes for b in bxs], k=30)]))
|
||||
bxes = [b for bxs in self.boxes for b in bxs]
|
||||
self.is_english = re.search(r"[\na-zA-Z0-9,/¸;:'\[\]\(\)!@#$%^&*\"?<>._-]{30,}", "".join([b["text"] for b in random.choices(bxes, k=min(30, len(bxes)))]))
|
||||
|
||||
logging.info("Is it English:", self.is_english)
|
||||
|
||||
|
||||
@ -134,5 +134,5 @@ if __name__ == "__main__":
|
||||
|
||||
while True:
|
||||
dispatch()
|
||||
time.sleep(3)
|
||||
time.sleep(1)
|
||||
update_progress()
|
||||
|
||||
@ -36,7 +36,7 @@ from rag.nlp import search
|
||||
from io import BytesIO
|
||||
import pandas as pd
|
||||
|
||||
from rag.app import laws, paper, presentation, manual, qa
|
||||
from rag.app import laws, paper, presentation, manual, qa, table,book
|
||||
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.services.document_service import DocumentService
|
||||
@ -49,10 +49,12 @@ BATCH_SIZE = 64
|
||||
FACTORY = {
|
||||
ParserType.GENERAL.value: laws,
|
||||
ParserType.PAPER.value: paper,
|
||||
ParserType.BOOK.value: book,
|
||||
ParserType.PRESENTATION.value: presentation,
|
||||
ParserType.MANUAL.value: manual,
|
||||
ParserType.LAWS.value: laws,
|
||||
ParserType.QA.value: qa,
|
||||
ParserType.TABLE.value: table,
|
||||
}
|
||||
|
||||
|
||||
@ -66,7 +68,7 @@ def set_progress(task_id, from_page, to_page, prog=None, msg="Processing..."):
|
||||
d = {"progress_msg": msg}
|
||||
if prog is not None: d["progress"] = prog
|
||||
try:
|
||||
TaskService.update_by_id(task_id, d)
|
||||
TaskService.update_progress(task_id, d)
|
||||
except Exception as e:
|
||||
cron_logger.error("set_progress:({}), {}".format(task_id, str(e)))
|
||||
|
||||
@ -113,7 +115,7 @@ def build(row, cvmdl):
|
||||
return []
|
||||
|
||||
callback = partial(set_progress, row["id"], row["from_page"], row["to_page"])
|
||||
chunker = FACTORY[row["parser_id"]]
|
||||
chunker = FACTORY[row["parser_id"].lower()]
|
||||
try:
|
||||
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
||||
cks = chunker.chunk(row["name"], MINIO.get(row["kb_id"], row["location"]), row["from_page"], row["to_page"],
|
||||
@ -154,6 +156,7 @@ def build(row, cvmdl):
|
||||
|
||||
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
||||
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
||||
del d["image"]
|
||||
docs.append(d)
|
||||
|
||||
return docs
|
||||
@ -168,7 +171,7 @@ def init_kb(row):
|
||||
|
||||
|
||||
def embedding(docs, mdl):
|
||||
tts, cnts = [d["docnm_kwd"] for d in docs if d.get("docnm_kwd")], [d["content_with_weight"] for d in docs]
|
||||
tts, cnts = [rmSpace(d["title_tks"]) for d in docs if d.get("title_tks")], [d["content_with_weight"] for d in docs]
|
||||
tk_count = 0
|
||||
if len(tts) == len(cnts):
|
||||
tts, c = mdl.encode(tts)
|
||||
@ -207,6 +210,7 @@ def main(comm, mod):
|
||||
cks = build(r, cv_mdl)
|
||||
if not cks:
|
||||
tmf.write(str(r["update_time"]) + "\n")
|
||||
callback(1., "No chunk! Done!")
|
||||
continue
|
||||
# TODO: exception handler
|
||||
## set_progress(r["did"], -1, "ERROR: ")
|
||||
@ -215,7 +219,6 @@ def main(comm, mod):
|
||||
except Exception as e:
|
||||
callback(-1, "Embedding error:{}".format(str(e)))
|
||||
cron_logger.error(str(e))
|
||||
continue
|
||||
|
||||
callback(msg="Finished embedding! Start to build index!")
|
||||
init_kb(r)
|
||||
@ -227,6 +230,7 @@ def main(comm, mod):
|
||||
else:
|
||||
if TaskService.do_cancel(r["id"]):
|
||||
ELASTICSEARCH.deleteByQuery(Q("match", doc_id=r["doc_id"]), idxnm=search.index_name(r["tenant_id"]))
|
||||
continue
|
||||
callback(1., "Done!")
|
||||
DocumentService.increment_chunk_num(r["doc_id"], r["kb_id"], tk_count, chunk_count, 0)
|
||||
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
||||
|
||||
Reference in New Issue
Block a user