add support for LocalAI (#1608)

### What problem does this PR solve?

#762 

### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾
2024-07-19 15:50:28 +08:00
committed by GitHub
parent 915354bec9
commit 3fcdba1683
9 changed files with 166 additions and 6 deletions

View File

@ -111,6 +111,24 @@ class OpenAIEmbed(Base):
return np.array(res.data[0].embedding), res.usage.total_tokens
class LocalAIEmbed(Base):
def __init__(self, key, model_name, base_url):
self.base_url = base_url + "/embeddings"
self.headers = {
"Content-Type": "application/json",
}
self.model_name = model_name.split("___")[0]
def encode(self, texts: list, batch_size=None):
data = {"model": self.model_name, "input": texts, "encoding_type": "float"}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["embedding"] for d in res["data"]]), 1024
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
class AzureEmbed(OpenAIEmbed):
def __init__(self, key, model_name, **kwargs):
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
@ -443,4 +461,4 @@ class GeminiEmbed(Base):
task_type="retrieval_document",
title="Embedding of single string")
token_count = num_tokens_from_string(text)
return np.array(result['embedding']),token_count
return np.array(result['embedding']),token_count