add support for LocalAI (#1608)

### What problem does this PR solve?

#762 

### Type of change
- [x] New Feature (non-breaking change which adds functionality)

---------

Co-authored-by: Zhedong Cen <cenzhedong2@126.com>
This commit is contained in:
黄腾
2024-07-19 15:50:28 +08:00
committed by GitHub
parent 915354bec9
commit 3fcdba1683
9 changed files with 166 additions and 6 deletions

View File

@ -21,6 +21,7 @@ from .rerank_model import *
EmbeddingModel = {
"Ollama": OllamaEmbed,
"LocalAI": LocalAIEmbed,
"OpenAI": OpenAIEmbed,
"Azure-OpenAI": AzureEmbed,
"Xinference": XinferenceEmbed,
@ -46,7 +47,8 @@ CvModel = {
"ZHIPU-AI": Zhipu4V,
"Moonshot": LocalCV,
'Gemini':GeminiCV,
'OpenRouter':OpenRouterCV
'OpenRouter':OpenRouterCV,
"LocalAI":LocalAICV
}
@ -56,6 +58,7 @@ ChatModel = {
"ZHIPU-AI": ZhipuChat,
"Tongyi-Qianwen": QWenChat,
"Ollama": OllamaChat,
"LocalAI": LocalAIChat,
"Xinference": XinferenceChat,
"Moonshot": MoonshotChat,
"DeepSeek": DeepSeekChat,
@ -67,7 +70,7 @@ ChatModel = {
'Gemini' : GeminiChat,
"Bedrock": BedrockChat,
"Groq": GroqChat,
'OpenRouter':OpenRouterChat
'OpenRouter':OpenRouterChat,
}

View File

@ -348,6 +348,82 @@ class OllamaChat(Base):
yield 0
class LocalAIChat(Base):
def __init__(self, key, model_name, base_url):
if base_url[-1] == "/":
base_url = base_url[:-1]
self.base_url = base_url + "/v1/chat/completions"
self.model_name = model_name.split("___")[0]
def chat(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
for k in list(gen_conf.keys()):
if k not in ["temperature", "top_p", "max_tokens"]:
del gen_conf[k]
headers = {
"Content-Type": "application/json",
}
payload = json.dumps(
{"model": self.model_name, "messages": history, **gen_conf}
)
try:
response = requests.request(
"POST", url=self.base_url, headers=headers, data=payload
)
response = response.json()
ans = response["choices"][0]["message"]["content"].strip()
if response["choices"][0]["finish_reason"] == "length":
ans += (
"...\nFor the content length reason, it stopped, continue?"
if is_english([ans])
else "······\n由于长度的原因,回答被截断了,要继续吗?"
)
return ans, response["usage"]["total_tokens"]
except Exception as e:
return "**ERROR**: " + str(e), 0
def chat_streamly(self, system, history, gen_conf):
if system:
history.insert(0, {"role": "system", "content": system})
ans = ""
total_tokens = 0
try:
headers = {
"Content-Type": "application/json",
}
payload = json.dumps(
{
"model": self.model_name,
"messages": history,
"stream": True,
**gen_conf,
}
)
response = requests.request(
"POST",
url=self.base_url,
headers=headers,
data=payload,
)
for resp in response.content.decode("utf-8").split("\n\n"):
if "choices" not in resp:
continue
resp = json.loads(resp[6:])
if "delta" in resp["choices"][0]:
text = resp["choices"][0]["delta"]["content"]
else:
continue
ans += text
total_tokens += 1
yield ans
except Exception as e:
yield ans + "\n**ERROR**: " + str(e)
yield total_tokens
class LocalLLM(Base):
class RPCProxy:
def __init__(self, host, port):

View File

@ -189,6 +189,35 @@ class OllamaCV(Base):
return "**ERROR**: " + str(e), 0
class LocalAICV(Base):
def __init__(self, key, model_name, base_url, lang="Chinese"):
self.client = OpenAI(api_key="empty", base_url=base_url)
self.model_name = model_name.split("___")[0]
self.lang = lang
def describe(self, image, max_tokens=300):
if not isinstance(image, bytes) and not isinstance(
image, BytesIO
): # if url string
prompt = self.prompt(image)
for i in range(len(prompt)):
prompt[i]["content"]["image_url"]["url"] = image
else:
b64 = self.image2base64(image)
prompt = self.prompt(b64)
for i in range(len(prompt)):
for c in prompt[i]["content"]:
if "text" in c:
c["type"] = "text"
res = self.client.chat.completions.create(
model=self.model_name,
messages=prompt,
max_tokens=max_tokens,
)
return res.choices[0].message.content.strip(), res.usage.total_tokens
class XinferenceCV(Base):
def __init__(self, key, model_name="", lang="Chinese", base_url=""):
self.client = OpenAI(api_key="xxx", base_url=base_url)

View File

@ -111,6 +111,24 @@ class OpenAIEmbed(Base):
return np.array(res.data[0].embedding), res.usage.total_tokens
class LocalAIEmbed(Base):
def __init__(self, key, model_name, base_url):
self.base_url = base_url + "/embeddings"
self.headers = {
"Content-Type": "application/json",
}
self.model_name = model_name.split("___")[0]
def encode(self, texts: list, batch_size=None):
data = {"model": self.model_name, "input": texts, "encoding_type": "float"}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["embedding"] for d in res["data"]]), 1024
def encode_queries(self, text):
embds, cnt = self.encode([text])
return np.array(embds[0]), cnt
class AzureEmbed(OpenAIEmbed):
def __init__(self, key, model_name, **kwargs):
self.client = AzureOpenAI(api_key=key, azure_endpoint=kwargs["base_url"], api_version="2024-02-01")
@ -443,4 +461,4 @@ class GeminiEmbed(Base):
task_type="retrieval_document",
title="Embedding of single string")
token_count = num_tokens_from_string(text)
return np.array(result['embedding']),token_count
return np.array(result['embedding']),token_count

View File

@ -135,7 +135,7 @@ class YoudaoRerank(DefaultRerank):
if isinstance(scores, float): res.append(scores)
else: res.extend(scores)
return np.array(res), token_count
class XInferenceRerank(Base):
def __init__(self, key="xxxxxxx", model_name="", base_url=""):
@ -156,3 +156,11 @@ class XInferenceRerank(Base):
}
res = requests.post(self.base_url, headers=self.headers, json=data).json()
return np.array([d["relevance_score"] for d in res["results"]]), res["meta"]["tokens"]["input_tokens"]+res["meta"]["tokens"]["output_tokens"]
class LocalAIRerank(Base):
def __init__(self, key, model_name, base_url):
pass
def similarity(self, query: str, texts: list):
raise NotImplementedError("The LocalAIRerank has not been implement")