Added infinity rank_feature support (#9044)

### What problem does this PR solve?

Added infinity rank_feature support

### Type of change

- [x] Bug Fix (non-breaking change which fixes an issue)
This commit is contained in:
Zhichang Yu
2025-07-29 09:14:23 +08:00
committed by GitHub
parent 28f7b33a74
commit 342a04ec8a
12 changed files with 85 additions and 34 deletions

View File

@ -26,7 +26,7 @@ from infinity.index import IndexInfo, IndexType
from infinity.connection_pool import ConnectionPool
from infinity.errors import ErrorCode
from rag import settings
from rag.settings import PAGERANK_FLD
from rag.settings import PAGERANK_FLD, TAG_FLD
from rag.utils import singleton
import pandas as pd
from api.utils.file_utils import get_project_base_directory
@ -311,7 +311,7 @@ class InfinityConnection(DocStoreConnection):
df_list = list()
table_list = list()
output = selectFields.copy()
for essential_field in ["id"]:
for essential_field in ["id"] + aggFields:
if essential_field not in output:
output.append(essential_field)
score_func = ""
@ -333,15 +333,29 @@ class InfinityConnection(DocStoreConnection):
if PAGERANK_FLD not in output:
output.append(PAGERANK_FLD)
output = [f for f in output if f != "_score"]
if limit <= 0:
# ElasticSearch default limit is 10000
limit = 10000
# Prepare expressions common to all tables
filter_cond = None
filter_fulltext = ""
if condition:
table_found = False
for indexName in indexNames:
table_name = f"{indexName}_{knowledgebaseIds[0]}"
filter_cond = equivalent_condition_to_str(condition, db_instance.get_table(table_name))
break
for kb_id in knowledgebaseIds:
table_name = f"{indexName}_{kb_id}"
try:
filter_cond = equivalent_condition_to_str(condition, db_instance.get_table(table_name))
table_found = True
break
except Exception:
pass
if table_found:
break
if not table_found:
logger.error(f"No valid tables found for indexNames {indexNames} and knowledgebaseIds {knowledgebaseIds}")
return pd.DataFrame(), 0
for matchExpr in matchExprs:
if isinstance(matchExpr, MatchTextExpr):
@ -355,6 +369,18 @@ class InfinityConnection(DocStoreConnection):
if isinstance(minimum_should_match, float):
str_minimum_should_match = str(int(minimum_should_match * 100)) + "%"
matchExpr.extra_options["minimum_should_match"] = str_minimum_should_match
# Add rank_feature support
if rank_feature and "rank_features" not in matchExpr.extra_options:
# Convert rank_feature dict to Infinity's rank_features string format
# Format: "field^feature_name^weight,field^feature_name^weight"
rank_features_list = []
for feature_name, weight in rank_feature.items():
# Use TAG_FLD as the field containing rank features
rank_features_list.append(f"{TAG_FLD}^{feature_name}^{weight}")
if rank_features_list:
matchExpr.extra_options["rank_features"] = ",".join(rank_features_list)
for k, v in matchExpr.extra_options.items():
if not isinstance(v, str):
matchExpr.extra_options[k] = str(v)
@ -416,7 +442,7 @@ class InfinityConnection(DocStoreConnection):
matchExpr.method, matchExpr.topn, matchExpr.fusion_params
)
else:
if len(filter_cond) > 0:
if filter_cond and len(filter_cond) > 0:
builder.filter(filter_cond)
if orderBy.fields:
builder.sort(order_by_expr_list)
@ -662,6 +688,8 @@ class InfinityConnection(DocStoreConnection):
k = column.lower()
if field_keyword(k):
res2[column] = res2[column].apply(lambda v:[kwd for kwd in v.split("###") if kwd])
elif re.search(r"_feas$", k):
res2[column] = res2[column].apply(lambda v: json.loads(v) if v else {})
elif k == "position_int":
def to_position_int(v):
if v:
@ -712,9 +740,46 @@ class InfinityConnection(DocStoreConnection):
def getAggregation(self, res: tuple[pd.DataFrame, int] | pd.DataFrame, fieldnm: str):
"""
TODO: Infinity doesn't provide aggregation
Manual aggregation for tag fields since Infinity doesn't provide native aggregation
"""
return list()
from collections import Counter
# Extract DataFrame from result
if isinstance(res, tuple):
df, _ = res
else:
df = res
if df.empty or fieldnm not in df.columns:
return []
# Aggregate tag counts
tag_counter = Counter()
for value in df[fieldnm]:
if pd.isna(value) or not value:
continue
# Handle different tag formats
if isinstance(value, str):
# Split by ### for tag_kwd field or comma for other formats
if fieldnm == "tag_kwd" and "###" in value:
tags = [tag.strip() for tag in value.split("###") if tag.strip()]
else:
# Try comma separation as fallback
tags = [tag.strip() for tag in value.split(",") if tag.strip()]
for tag in tags:
if tag: # Only count non-empty tags
tag_counter[tag] += 1
elif isinstance(value, list):
# Handle list format
for tag in value:
if tag and isinstance(tag, str):
tag_counter[tag.strip()] += 1
# Return as list of [tag, count] pairs, sorted by count descending
return [[tag, count] for tag, count in tag_counter.most_common()]
"""
SQL