|
|
|
|
@ -14,6 +14,7 @@
|
|
|
|
|
# limitations under the License.
|
|
|
|
|
#
|
|
|
|
|
import json
|
|
|
|
|
import logging
|
|
|
|
|
import os
|
|
|
|
|
import hashlib
|
|
|
|
|
import copy
|
|
|
|
|
@ -24,9 +25,10 @@ from timeit import default_timer as timer
|
|
|
|
|
|
|
|
|
|
from rag.llm import EmbeddingModel, CvModel
|
|
|
|
|
from rag.settings import cron_logger, DOC_MAXIMUM_SIZE
|
|
|
|
|
from rag.utils import ELASTICSEARCH, num_tokens_from_string
|
|
|
|
|
from rag.utils import ELASTICSEARCH
|
|
|
|
|
from rag.utils import MINIO
|
|
|
|
|
from rag.utils import rmSpace, findMaxDt
|
|
|
|
|
from rag.utils import rmSpace, findMaxTm
|
|
|
|
|
|
|
|
|
|
from rag.nlp import huchunk, huqie, search
|
|
|
|
|
from io import BytesIO
|
|
|
|
|
import pandas as pd
|
|
|
|
|
@ -47,6 +49,7 @@ from rag.nlp.huchunk import (
|
|
|
|
|
from web_server.db import LLMType
|
|
|
|
|
from web_server.db.services.document_service import DocumentService
|
|
|
|
|
from web_server.db.services.llm_service import TenantLLMService
|
|
|
|
|
from web_server.settings import database_logger
|
|
|
|
|
from web_server.utils import get_format_time
|
|
|
|
|
from web_server.utils.file_utils import get_project_base_directory
|
|
|
|
|
|
|
|
|
|
@ -83,7 +86,7 @@ def collect(comm, mod, tm):
|
|
|
|
|
if len(docs) == 0:
|
|
|
|
|
return pd.DataFrame()
|
|
|
|
|
docs = pd.DataFrame(docs)
|
|
|
|
|
mtm = str(docs["update_time"].max())[:19]
|
|
|
|
|
mtm = docs["update_time"].max()
|
|
|
|
|
cron_logger.info("TOTAL:{}, To:{}".format(len(docs), mtm))
|
|
|
|
|
return docs
|
|
|
|
|
|
|
|
|
|
@ -99,11 +102,12 @@ def set_progress(docid, prog, msg="Processing...", begin=False):
|
|
|
|
|
cron_logger.error("set_progress:({}), {}".format(docid, str(e)))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def build(row):
|
|
|
|
|
def build(row, cvmdl):
|
|
|
|
|
if row["size"] > DOC_MAXIMUM_SIZE:
|
|
|
|
|
set_progress(row["id"], -1, "File size exceeds( <= %dMb )" %
|
|
|
|
|
(int(DOC_MAXIMUM_SIZE / 1024 / 1024)))
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
res = ELASTICSEARCH.search(Q("term", doc_id=row["id"]))
|
|
|
|
|
if ELASTICSEARCH.getTotal(res) > 0:
|
|
|
|
|
ELASTICSEARCH.updateScriptByQuery(Q("term", doc_id=row["id"]),
|
|
|
|
|
@ -120,7 +124,8 @@ def build(row):
|
|
|
|
|
set_progress(row["id"], random.randint(0, 20) /
|
|
|
|
|
100., "Finished preparing! Start to slice file!", True)
|
|
|
|
|
try:
|
|
|
|
|
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]))
|
|
|
|
|
cron_logger.info("Chunkking {}/{}".format(row["location"], row["name"]))
|
|
|
|
|
obj = chuck_doc(row["name"], MINIO.get(row["kb_id"], row["location"]), cvmdl)
|
|
|
|
|
except Exception as e:
|
|
|
|
|
if re.search("(No such file|not found)", str(e)):
|
|
|
|
|
set_progress(
|
|
|
|
|
@ -131,6 +136,9 @@ def build(row):
|
|
|
|
|
row["id"], -1, f"Internal server error: %s" %
|
|
|
|
|
str(e).replace(
|
|
|
|
|
"'", ""))
|
|
|
|
|
|
|
|
|
|
cron_logger.warn("Chunkking {}/{}: {}".format(row["location"], row["name"], str(e)))
|
|
|
|
|
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
if not obj.text_chunks and not obj.table_chunks:
|
|
|
|
|
@ -144,7 +152,7 @@ def build(row):
|
|
|
|
|
"Finished slicing files. Start to embedding the content.")
|
|
|
|
|
|
|
|
|
|
doc = {
|
|
|
|
|
"doc_id": row["did"],
|
|
|
|
|
"doc_id": row["id"],
|
|
|
|
|
"kb_id": [str(row["kb_id"])],
|
|
|
|
|
"docnm_kwd": os.path.split(row["location"])[-1],
|
|
|
|
|
"title_tks": huqie.qie(row["name"]),
|
|
|
|
|
@ -164,10 +172,10 @@ def build(row):
|
|
|
|
|
docs.append(d)
|
|
|
|
|
continue
|
|
|
|
|
|
|
|
|
|
if isinstance(img, Image):
|
|
|
|
|
img.save(output_buffer, format='JPEG')
|
|
|
|
|
else:
|
|
|
|
|
if isinstance(img, bytes):
|
|
|
|
|
output_buffer = BytesIO(img)
|
|
|
|
|
else:
|
|
|
|
|
img.save(output_buffer, format='JPEG')
|
|
|
|
|
|
|
|
|
|
MINIO.put(row["kb_id"], d["_id"], output_buffer.getvalue())
|
|
|
|
|
d["img_id"] = "{}-{}".format(row["kb_id"], d["_id"])
|
|
|
|
|
@ -215,15 +223,16 @@ def embedding(docs, mdl):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def model_instance(tenant_id, llm_type):
|
|
|
|
|
model_config = TenantLLMService.query(tenant_id=tenant_id, model_type=LLMType.EMBEDDING)
|
|
|
|
|
if not model_config:return
|
|
|
|
|
model_config = model_config[0]
|
|
|
|
|
model_config = TenantLLMService.get_api_key(tenant_id, model_type=LLMType.EMBEDDING)
|
|
|
|
|
if not model_config:
|
|
|
|
|
model_config = {"llm_factory": "local", "api_key": "", "llm_name": ""}
|
|
|
|
|
else: model_config = model_config[0].to_dict()
|
|
|
|
|
if llm_type == LLMType.EMBEDDING:
|
|
|
|
|
if model_config.llm_factory not in EmbeddingModel: return
|
|
|
|
|
return EmbeddingModel[model_config.llm_factory](model_config.api_key, model_config.llm_name)
|
|
|
|
|
if model_config["llm_factory"] not in EmbeddingModel: return
|
|
|
|
|
return EmbeddingModel[model_config["llm_factory"]](model_config["api_key"], model_config["llm_name"])
|
|
|
|
|
if llm_type == LLMType.IMAGE2TEXT:
|
|
|
|
|
if model_config.llm_factory not in CvModel: return
|
|
|
|
|
return CvModel[model_config.llm_factory](model_config.api_key, model_config.llm_name)
|
|
|
|
|
if model_config["llm_factory"] not in CvModel: return
|
|
|
|
|
return CvModel[model_config.llm_factory](model_config["api_key"], model_config["llm_name"])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(comm, mod):
|
|
|
|
|
@ -231,7 +240,7 @@ def main(comm, mod):
|
|
|
|
|
from rag.llm import HuEmbedding
|
|
|
|
|
model = HuEmbedding()
|
|
|
|
|
tm_fnm = os.path.join(get_project_base_directory(), "rag/res", f"{comm}-{mod}.tm")
|
|
|
|
|
tm = findMaxDt(tm_fnm)
|
|
|
|
|
tm = findMaxTm(tm_fnm)
|
|
|
|
|
rows = collect(comm, mod, tm)
|
|
|
|
|
if len(rows) == 0:
|
|
|
|
|
return
|
|
|
|
|
@ -247,7 +256,7 @@ def main(comm, mod):
|
|
|
|
|
st_tm = timer()
|
|
|
|
|
cks = build(r, cv_mdl)
|
|
|
|
|
if not cks:
|
|
|
|
|
tmf.write(str(r["updated_at"]) + "\n")
|
|
|
|
|
tmf.write(str(r["update_time"]) + "\n")
|
|
|
|
|
continue
|
|
|
|
|
# TODO: exception handler
|
|
|
|
|
## set_progress(r["did"], -1, "ERROR: ")
|
|
|
|
|
@ -268,12 +277,19 @@ def main(comm, mod):
|
|
|
|
|
cron_logger.error(str(es_r))
|
|
|
|
|
else:
|
|
|
|
|
set_progress(r["id"], 1., "Done!")
|
|
|
|
|
DocumentService.update_by_id(r["id"], {"token_num": tk_count, "chunk_num": len(cks), "process_duation": timer()-st_tm})
|
|
|
|
|
DocumentService.increment_chunk_num(r["id"], r["kb_id"], tk_count, len(cks), timer()-st_tm)
|
|
|
|
|
cron_logger.info("Chunk doc({}), token({}), chunks({})".format(r["id"], tk_count, len(cks)))
|
|
|
|
|
|
|
|
|
|
tmf.write(str(r["update_time"]) + "\n")
|
|
|
|
|
tmf.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
peewee_logger = logging.getLogger('peewee')
|
|
|
|
|
peewee_logger.propagate = False
|
|
|
|
|
peewee_logger.addHandler(database_logger.handlers[0])
|
|
|
|
|
peewee_logger.setLevel(database_logger.level)
|
|
|
|
|
|
|
|
|
|
from mpi4py import MPI
|
|
|
|
|
comm = MPI.COMM_WORLD
|
|
|
|
|
main(comm.Get_size(), comm.Get_rank())
|
|
|
|
|
|