mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
build python version rag-flow (#21)
* clean rust version project * clean rust version project * build python version rag-flow
This commit is contained in:
250
rag/nlp/search.py
Normal file
250
rag/nlp/search.py
Normal file
@ -0,0 +1,250 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import re
|
||||
from elasticsearch_dsl import Q, Search, A
|
||||
from typing import List, Optional, Tuple, Dict, Union
|
||||
from dataclasses import dataclass
|
||||
from rag.utils import rmSpace
|
||||
from rag.nlp import huqie, query
|
||||
import numpy as np
|
||||
|
||||
|
||||
def index_name(uid): return f"docgpt_{uid}"
|
||||
|
||||
|
||||
class Dealer:
|
||||
def __init__(self, es, emb_mdl):
|
||||
self.qryr = query.EsQueryer(es)
|
||||
self.qryr.flds = [
|
||||
"title_tks^10",
|
||||
"title_sm_tks^5",
|
||||
"content_ltks^2",
|
||||
"content_sm_ltks"]
|
||||
self.es = es
|
||||
self.emb_mdl = emb_mdl
|
||||
|
||||
@dataclass
|
||||
class SearchResult:
|
||||
total: int
|
||||
ids: List[str]
|
||||
query_vector: List[float] = None
|
||||
field: Optional[Dict] = None
|
||||
highlight: Optional[Dict] = None
|
||||
aggregation: Union[List, Dict, None] = None
|
||||
keywords: Optional[List[str]] = None
|
||||
group_docs: List[List] = None
|
||||
|
||||
def _vector(self, txt, sim=0.8, topk=10):
|
||||
return {
|
||||
"field": "q_vec",
|
||||
"k": topk,
|
||||
"similarity": sim,
|
||||
"num_candidates": 1000,
|
||||
"query_vector": self.emb_mdl.encode_queries(txt)
|
||||
}
|
||||
|
||||
def search(self, req, idxnm, tks_num=3):
|
||||
keywords = []
|
||||
qst = req.get("question", "")
|
||||
|
||||
bqry, keywords = self.qryr.question(qst)
|
||||
if req.get("kb_ids"):
|
||||
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
|
||||
bqry.filter.append(Q("exists", field="q_tks"))
|
||||
bqry.boost = 0.05
|
||||
print(bqry)
|
||||
|
||||
s = Search()
|
||||
pg = int(req.get("page", 1)) - 1
|
||||
ps = int(req.get("size", 1000))
|
||||
src = req.get("field", ["docnm_kwd", "content_ltks", "kb_id",
|
||||
"image_id", "doc_id", "q_vec"])
|
||||
|
||||
s = s.query(bqry)[pg * ps:(pg + 1) * ps]
|
||||
s = s.highlight("content_ltks")
|
||||
s = s.highlight("title_ltks")
|
||||
if not qst:
|
||||
s = s.sort(
|
||||
{"create_time": {"order": "desc", "unmapped_type": "date"}})
|
||||
|
||||
s = s.highlight_options(
|
||||
fragment_size=120,
|
||||
number_of_fragments=5,
|
||||
boundary_scanner_locale="zh-CN",
|
||||
boundary_scanner="SENTENCE",
|
||||
boundary_chars=",./;:\\!(),。?:!……()——、"
|
||||
)
|
||||
s = s.to_dict()
|
||||
q_vec = []
|
||||
if req.get("vector"):
|
||||
s["knn"] = self._vector(qst, req.get("similarity", 0.4), ps)
|
||||
s["knn"]["filter"] = bqry.to_dict()
|
||||
del s["highlight"]
|
||||
q_vec = s["knn"]["query_vector"]
|
||||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||||
print("TOTAL: ", self.es.getTotal(res))
|
||||
if self.es.getTotal(res) == 0 and "knn" in s:
|
||||
bqry, _ = self.qryr.question(qst, min_match="10%")
|
||||
if req.get("kb_ids"):
|
||||
bqry.filter.append(Q("terms", kb_id=req["kb_ids"]))
|
||||
s["query"] = bqry.to_dict()
|
||||
s["knn"]["filter"] = bqry.to_dict()
|
||||
s["knn"]["similarity"] = 0.7
|
||||
res = self.es.search(s, idxnm=idxnm, timeout="600s", src=src)
|
||||
|
||||
kwds = set([])
|
||||
for k in keywords:
|
||||
kwds.add(k)
|
||||
for kk in huqie.qieqie(k).split(" "):
|
||||
if len(kk) < 2:
|
||||
continue
|
||||
if kk in kwds:
|
||||
continue
|
||||
kwds.add(kk)
|
||||
|
||||
aggs = self.getAggregation(res, "docnm_kwd")
|
||||
|
||||
return self.SearchResult(
|
||||
total=self.es.getTotal(res),
|
||||
ids=self.es.getDocIds(res),
|
||||
query_vector=q_vec,
|
||||
aggregation=aggs,
|
||||
highlight=self.getHighlight(res),
|
||||
field=self.getFields(res, ["docnm_kwd", "content_ltks",
|
||||
"kb_id", "image_id", "doc_id", "q_vec"]),
|
||||
keywords=list(kwds)
|
||||
)
|
||||
|
||||
def getAggregation(self, res, g):
|
||||
if not "aggregations" in res or "aggs_" + g not in res["aggregations"]:
|
||||
return
|
||||
bkts = res["aggregations"]["aggs_" + g]["buckets"]
|
||||
return [(b["key"], b["doc_count"]) for b in bkts]
|
||||
|
||||
def getHighlight(self, res):
|
||||
def rmspace(line):
|
||||
eng = set(list("qwertyuioplkjhgfdsazxcvbnm"))
|
||||
r = []
|
||||
for t in line.split(" "):
|
||||
if not t:
|
||||
continue
|
||||
if len(r) > 0 and len(
|
||||
t) > 0 and r[-1][-1] in eng and t[0] in eng:
|
||||
r.append(" ")
|
||||
r.append(t)
|
||||
r = "".join(r)
|
||||
return r
|
||||
|
||||
ans = {}
|
||||
for d in res["hits"]["hits"]:
|
||||
hlts = d.get("highlight")
|
||||
if not hlts:
|
||||
continue
|
||||
ans[d["_id"]] = "".join([a for a in list(hlts.items())[0][1]])
|
||||
return ans
|
||||
|
||||
def getFields(self, sres, flds):
|
||||
res = {}
|
||||
if not flds:
|
||||
return {}
|
||||
for d in self.es.getSource(sres):
|
||||
m = {n: d.get(n) for n in flds if d.get(n) is not None}
|
||||
for n, v in m.items():
|
||||
if isinstance(v, type([])):
|
||||
m[n] = "\t".join([str(vv) for vv in v])
|
||||
continue
|
||||
if not isinstance(v, type("")):
|
||||
m[n] = str(m[n])
|
||||
m[n] = rmSpace(m[n])
|
||||
|
||||
if m:
|
||||
res[d["id"]] = m
|
||||
return res
|
||||
|
||||
@staticmethod
|
||||
def trans2floats(txt):
|
||||
return [float(t) for t in txt.split("\t")]
|
||||
|
||||
def insert_citations(self, ans, top_idx, sres,
|
||||
vfield="q_vec", cfield="content_ltks"):
|
||||
|
||||
ins_embd = [Dealer.trans2floats(
|
||||
sres.field[sres.ids[i]][vfield]) for i in top_idx]
|
||||
ins_tw = [sres.field[sres.ids[i]][cfield].split(" ") for i in top_idx]
|
||||
s = 0
|
||||
e = 0
|
||||
res = ""
|
||||
|
||||
def citeit():
|
||||
nonlocal s, e, ans, res
|
||||
if not ins_embd:
|
||||
return
|
||||
embd = self.emb_mdl.encode(ans[s: e])
|
||||
sim = self.qryr.hybrid_similarity(embd,
|
||||
ins_embd,
|
||||
huqie.qie(ans[s:e]).split(" "),
|
||||
ins_tw)
|
||||
print(ans[s: e], sim)
|
||||
mx = np.max(sim) * 0.99
|
||||
if mx < 0.55:
|
||||
return
|
||||
cita = list(set([top_idx[i]
|
||||
for i in range(len(ins_embd)) if sim[i] > mx]))[:4]
|
||||
for i in cita:
|
||||
res += f"@?{i}?@"
|
||||
|
||||
return cita
|
||||
|
||||
punct = set(";。?!!")
|
||||
if not self.qryr.isChinese(ans):
|
||||
punct.add("?")
|
||||
punct.add(".")
|
||||
while e < len(ans):
|
||||
if e - s < 12 or ans[e] not in punct:
|
||||
e += 1
|
||||
continue
|
||||
if ans[e] == "." and e + \
|
||||
1 < len(ans) and re.match(r"[0-9]", ans[e + 1]):
|
||||
e += 1
|
||||
continue
|
||||
if ans[e] == "." and e - 2 >= 0 and ans[e - 2] == "\n":
|
||||
e += 1
|
||||
continue
|
||||
res += ans[s: e]
|
||||
citeit()
|
||||
res += ans[e]
|
||||
e += 1
|
||||
s = e
|
||||
|
||||
if s < len(ans):
|
||||
res += ans[s:]
|
||||
citeit()
|
||||
|
||||
return res
|
||||
|
||||
def rerank(self, sres, query, tkweight=0.3, vtweight=0.7,
|
||||
vfield="q_vec", cfield="content_ltks"):
|
||||
ins_embd = [
|
||||
Dealer.trans2floats(
|
||||
sres.field[i]["q_vec"]) for i in sres.ids]
|
||||
if not ins_embd:
|
||||
return []
|
||||
ins_tw = [sres.field[i][cfield].split(" ") for i in sres.ids]
|
||||
# return CosineSimilarity([sres.query_vector], ins_embd)[0]
|
||||
sim = self.qryr.hybrid_similarity(sres.query_vector,
|
||||
ins_embd,
|
||||
huqie.qie(query).split(" "),
|
||||
ins_tw, tkweight, vtweight)
|
||||
return sim
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from util import es_conn
|
||||
SE = Dealer(es_conn.HuEs("infiniflow"))
|
||||
qs = [
|
||||
"胡凯",
|
||||
""
|
||||
]
|
||||
for q in qs:
|
||||
print(">>>>>>>>>>>>>>>>>>>>", q)
|
||||
print(SE.search(
|
||||
{"question": q, "kb_ids": "64f072a75f3b97c865718c4a"}, "infiniflow_*"))
|
||||
Reference in New Issue
Block a user