mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
go through smoke test of all API (#12)
* add field progress msg into docinfo; add file processing procedure * go through upload, create kb, add doc to kb * smoke test for all API * smoke test for all API
This commit is contained in:
@ -1,7 +1,10 @@
|
||||
[infiniflow]
|
||||
es=127.0.0.1:9200
|
||||
es=http://127.0.0.1:9200
|
||||
pgdb_usr=root
|
||||
pgdb_pwd=infiniflow_docgpt
|
||||
pgdb_host=127.0.0.1
|
||||
pgdb_port=5455
|
||||
minio_host=127.0.0.1:9000
|
||||
minio_usr=infiniflow
|
||||
minio_pwd=infiniflow_docgpt
|
||||
|
||||
|
||||
@ -2,6 +2,7 @@ import re
|
||||
import os
|
||||
import copy
|
||||
import base64
|
||||
import magic
|
||||
from dataclasses import dataclass
|
||||
from typing import List
|
||||
import numpy as np
|
||||
@ -373,6 +374,7 @@ class PptChunker(HuChunker):
|
||||
from pptx import Presentation
|
||||
ppt = Presentation(fnm)
|
||||
flds = self.Fields()
|
||||
flds.text_chunks = []
|
||||
for slide in ppt.slides:
|
||||
for shape in slide.shapes:
|
||||
if hasattr(shape, "text"):
|
||||
@ -391,11 +393,21 @@ class TextChunker(HuChunker):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@staticmethod
|
||||
def is_binary_file(file_path):
|
||||
mime = magic.Magic(mime=True)
|
||||
file_type = mime.from_file(file_path)
|
||||
if 'text' in file_type:
|
||||
return False
|
||||
else:
|
||||
return True
|
||||
|
||||
def __call__(self, fnm):
|
||||
flds = self.Fields()
|
||||
if self.is_binary_file(fnm):return flds
|
||||
with open(fnm, "r") as f:
|
||||
txt = f.read()
|
||||
flds.text_chunks = self.naive_text_chunk(txt)
|
||||
flds.text_chunks = [(c, None) for c in self.naive_text_chunk(txt)]
|
||||
flds.table_chunks = []
|
||||
return flds
|
||||
|
||||
|
||||
@ -1,10 +1,15 @@
|
||||
import json, re, sys, os, hashlib, copy, glob, util, time, random
|
||||
from util.es_conn import HuEs, Postgres
|
||||
import json, os, sys, hashlib, copy, time, random, re, logging, torch
|
||||
from os.path import dirname, realpath
|
||||
sys.path.append(dirname(realpath(__file__)) + "/../")
|
||||
from util.es_conn import HuEs
|
||||
from util.db_conn import Postgres
|
||||
from util.minio_conn import HuMinio
|
||||
from util import rmSpace, findMaxDt
|
||||
from FlagEmbedding import FlagModel
|
||||
from nlp import huchunk, huqie
|
||||
import base64, hashlib
|
||||
from io import BytesIO
|
||||
import pandas as pd
|
||||
from elasticsearch_dsl import Q
|
||||
from parser import (
|
||||
PdfParser,
|
||||
@ -22,73 +27,115 @@ from nlp.huchunk import (
|
||||
ES = HuEs("infiniflow")
|
||||
BATCH_SIZE = 64
|
||||
PG = Postgres("infiniflow", "docgpt")
|
||||
MINIO = HuMinio("infiniflow")
|
||||
|
||||
PDF = PdfChunker(PdfParser())
|
||||
DOC = DocxChunker(DocxParser())
|
||||
EXC = ExcelChunker(ExcelParser())
|
||||
PPT = PptChunker()
|
||||
|
||||
UPLOAD_LOCATION = os.environ.get("UPLOAD_LOCATION", "./")
|
||||
logging.warning(f"The files are stored in {UPLOAD_LOCATION}, please check it!")
|
||||
|
||||
|
||||
def chuck_doc(name):
|
||||
name = os.path.split(name)[-1].lower().split(".")[-1]
|
||||
if name.find("pdf") >= 0: return PDF(name)
|
||||
if name.find("doc") >= 0: return DOC(name)
|
||||
if name.find("xlsx") >= 0: return EXC(name)
|
||||
if name.find("ppt") >= 0: return PDF(name)
|
||||
if name.find("pdf") >= 0: return PPT(name)
|
||||
suff = os.path.split(name)[-1].lower().split(".")[-1]
|
||||
if suff.find("pdf") >= 0: return PDF(name)
|
||||
if suff.find("doc") >= 0: return DOC(name)
|
||||
if re.match(r"(xlsx|xlsm|xltx|xltm)", suff): return EXC(name)
|
||||
if suff.find("ppt") >= 0: return PPT(name)
|
||||
|
||||
if re.match(r"(txt|csv)", name): return TextChunker(name)
|
||||
return TextChunker()(name)
|
||||
|
||||
|
||||
def collect(comm, mod, tm):
|
||||
sql = f"""
|
||||
select
|
||||
id as kb2doc_id,
|
||||
kb_id,
|
||||
did,
|
||||
updated_at,
|
||||
is_deleted
|
||||
from kb2_doc
|
||||
where
|
||||
updated_at >= '{tm}'
|
||||
and kb_progress = 0
|
||||
and MOD(did, {comm}) = {mod}
|
||||
order by updated_at asc
|
||||
limit 1000
|
||||
"""
|
||||
kb2doc = PG.select(sql)
|
||||
if len(kb2doc) == 0:return pd.DataFrame()
|
||||
|
||||
sql = """
|
||||
select
|
||||
did,
|
||||
uid,
|
||||
doc_name,
|
||||
location,
|
||||
updated_at
|
||||
from docinfo
|
||||
size
|
||||
from doc_info
|
||||
where
|
||||
updated_at >= '{tm}'
|
||||
and kb_progress = 0
|
||||
and type = 'doc'
|
||||
and MOD(uid, {comm}) = {mod}
|
||||
order by updated_at asc
|
||||
limit 1000
|
||||
"""
|
||||
df = PG.select(sql)
|
||||
df = df.fillna("")
|
||||
mtm = str(df["updated_at"].max())[:19]
|
||||
print("TOTAL:", len(df), "To: ", mtm)
|
||||
return df, mtm
|
||||
did in (%s)
|
||||
"""%",".join([str(i) for i in kb2doc["did"].unique()])
|
||||
docs = PG.select(sql)
|
||||
docs = docs.fillna("")
|
||||
docs = docs.join(kb2doc.set_index("did"), on="did", how="left")
|
||||
|
||||
mtm = str(docs["updated_at"].max())[:19]
|
||||
print("TOTAL:", len(docs), "To: ", mtm)
|
||||
return docs
|
||||
|
||||
|
||||
def set_progress(did, prog, msg):
|
||||
def set_progress(kb2doc_id, prog, msg="Processing..."):
|
||||
sql = f"""
|
||||
update docinfo set kb_progress={prog}, kb_progress_msg='{msg}' where did={did}
|
||||
update kb2_doc set kb_progress={prog}, kb_progress_msg='{msg}'
|
||||
where
|
||||
id={kb2doc_id}
|
||||
"""
|
||||
PG.update(sql)
|
||||
|
||||
|
||||
def build(row):
|
||||
if row["size"] > 256000000:
|
||||
set_progress(row["did"], -1, "File size exceeds( <= 256Mb )")
|
||||
set_progress(row["kb2doc_id"], -1, "File size exceeds( <= 256Mb )")
|
||||
return []
|
||||
res = ES.search(Q("term", doc_id=row["did"]))
|
||||
if ES.getTotal(res) > 0:
|
||||
ES.updateScriptByQuery(Q("term", doc_id=row["did"]),
|
||||
scripts="""
|
||||
if(!ctx._source.kb_id.contains('%s'))
|
||||
ctx._source.kb_id.add('%s');
|
||||
"""%(str(row["kb_id"]), str(row["kb_id"])),
|
||||
idxnm = index_name(row["uid"])
|
||||
)
|
||||
set_progress(row["kb2doc_id"], 1, "Done")
|
||||
return []
|
||||
|
||||
random.seed(time.time())
|
||||
set_progress(row["kb2doc_id"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!")
|
||||
try:
|
||||
obj = chuck_doc(os.path.join(UPLOAD_LOCATION, row["location"]))
|
||||
except Exception as e:
|
||||
if re.search("(No such file|not found)", str(e)):
|
||||
set_progress(row["kb2doc_id"], -1, "Can not find file <%s>"%row["doc_name"])
|
||||
else:
|
||||
set_progress(row["kb2doc_id"], -1, f"Internal system error: %s"%str(e).replace("'", ""))
|
||||
return []
|
||||
|
||||
print(row["doc_name"], obj)
|
||||
if not obj.text_chunks and not obj.table_chunks:
|
||||
set_progress(row["kb2doc_id"], 1, "Nothing added! Mostly, file type unsupported yet.")
|
||||
return []
|
||||
|
||||
set_progress(row["kb2doc_id"], random.randint(20, 60)/100., "Finished slicing files. Start to embedding the content.")
|
||||
|
||||
doc = {
|
||||
"doc_id": row["did"],
|
||||
"kb_id": [str(row["kb_id"])],
|
||||
"title_tks": huqie.qie(os.path.split(row["location"])[-1]),
|
||||
"updated_at": row["updated_at"]
|
||||
"updated_at": str(row["updated_at"]).replace("T", " ")[:19]
|
||||
}
|
||||
random.seed(time.time())
|
||||
set_progress(row["did"], random.randint(0, 20)/100., "Finished preparing! Start to slice file!")
|
||||
obj = chuck_doc(row["location"])
|
||||
if not obj:
|
||||
set_progress(row["did"], -1, "Unsuported file type.")
|
||||
return []
|
||||
|
||||
set_progress(row["did"], random.randint(20, 60)/100.)
|
||||
|
||||
output_buffer = BytesIO()
|
||||
docs = []
|
||||
md5 = hashlib.md5()
|
||||
@ -97,12 +144,11 @@ def build(row):
|
||||
md5.update((txt + str(d["doc_id"])).encode("utf-8"))
|
||||
d["_id"] = md5.hexdigest()
|
||||
d["content_ltks"] = huqie.qie(txt)
|
||||
d["docnm_kwd"] = rmSpace(d["docnm_tks"])
|
||||
if not img:
|
||||
docs.append(d)
|
||||
continue
|
||||
img.save(output_buffer, format='JPEG')
|
||||
d["img_bin"] = base64.b64encode(output_buffer.getvalue())
|
||||
d["img_bin"] = str(output_buffer.getvalue())
|
||||
docs.append(d)
|
||||
|
||||
for arr, img in obj.table_chunks:
|
||||
@ -115,9 +161,11 @@ def build(row):
|
||||
docs.append(d)
|
||||
continue
|
||||
img.save(output_buffer, format='JPEG')
|
||||
d["img_bin"] = base64.b64encode(output_buffer.getvalue())
|
||||
MINIO.put("{}-{}".format(row["uid"], row["kb_id"]), d["_id"],
|
||||
output_buffer.getvalue())
|
||||
d["img_id"] = "{}-{}".format(row["uid"], row["kb_id"])
|
||||
docs.append(d)
|
||||
set_progress(row["did"], random.randint(60, 70)/100., "Finished slicing. Start to embedding the content.")
|
||||
set_progress(row["kb2doc_id"], random.randint(60, 70)/100., "Continue embedding the content.")
|
||||
|
||||
return docs
|
||||
|
||||
@ -127,7 +175,7 @@ def index_name(uid):return f"docgpt_{uid}"
|
||||
def init_kb(row):
|
||||
idxnm = index_name(row["uid"])
|
||||
if ES.indexExist(idxnm): return
|
||||
return ES.createIdx(idxnm, json.load(open("res/mapping.json", "r")))
|
||||
return ES.createIdx(idxnm, json.load(open("conf/mapping.json", "r")))
|
||||
|
||||
|
||||
model = None
|
||||
@ -138,27 +186,59 @@ def embedding(docs):
|
||||
vects = 0.1 * tts + 0.9 * cnts
|
||||
assert len(vects) == len(docs)
|
||||
for i,d in enumerate(docs):d["q_vec"] = vects[i].tolist()
|
||||
for d in docs:
|
||||
set_progress(d["doc_id"], random.randint(70, 95)/100.,
|
||||
"Finished embedding! Start to build index!")
|
||||
|
||||
|
||||
def rm_doc_from_kb(df):
|
||||
if len(df) == 0:return
|
||||
for _,r in df.iterrows():
|
||||
ES.updateScriptByQuery(Q("term", doc_id=r["did"]),
|
||||
scripts="""
|
||||
if(ctx._source.kb_id.contains('%s'))
|
||||
ctx._source.kb_id.remove(
|
||||
ctx._source.kb_id.indexOf('%s')
|
||||
);
|
||||
"""%(str(r["kb_id"]),str(r["kb_id"])),
|
||||
idxnm = index_name(r["uid"])
|
||||
)
|
||||
if len(df) == 0:return
|
||||
sql = """
|
||||
delete from kb2_doc where id in (%s)
|
||||
"""%",".join([str(i) for i in df["kb2doc_id"]])
|
||||
PG.update(sql)
|
||||
|
||||
|
||||
def main(comm, mod):
|
||||
global model
|
||||
from FlagEmbedding import FlagModel
|
||||
model = FlagModel('/opt/home/kevinhu/data/bge-large-zh-v1.5/',
|
||||
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
|
||||
use_fp16=torch.cuda.is_available())
|
||||
tm_fnm = f"res/{comm}-{mod}.tm"
|
||||
tmf = open(tm_fnm, "a+")
|
||||
tm = findMaxDt(tm_fnm)
|
||||
rows, tm = collect(comm, mod, tm)
|
||||
for r in rows:
|
||||
if r["is_deleted"]:
|
||||
ES.deleteByQuery(Q("term", dock_id=r["did"]), index_name(r["uid"]))
|
||||
continue
|
||||
rows = collect(comm, mod, tm)
|
||||
if len(rows) == 0:return
|
||||
|
||||
rm_doc_from_kb(rows.loc[rows.is_deleted == True])
|
||||
rows = rows.loc[rows.is_deleted == False].reset_index(drop=True)
|
||||
if len(rows) == 0:return
|
||||
tmf = open(tm_fnm, "a+")
|
||||
for _, r in rows.iterrows():
|
||||
cks = build(r)
|
||||
if not cks:
|
||||
tmf.write(str(r["updated_at"]) + "\n")
|
||||
continue
|
||||
## TODO: exception handler
|
||||
## set_progress(r["did"], -1, "ERROR: ")
|
||||
embedding(cks)
|
||||
if cks: init_kb(r)
|
||||
ES.bulk(cks, index_name(r["uid"]))
|
||||
|
||||
set_progress(r["kb2doc_id"], random.randint(70, 95)/100.,
|
||||
"Finished embedding! Start to build index!")
|
||||
init_kb(r)
|
||||
es_r = ES.bulk(cks, index_name(r["uid"]))
|
||||
if es_r:
|
||||
set_progress(r["kb2doc_id"], -1, "Index failure!")
|
||||
print(es_r)
|
||||
else: set_progress(r["kb2doc_id"], 1., "Done!")
|
||||
tmf.write(str(r["updated_at"]) + "\n")
|
||||
tmf.close()
|
||||
|
||||
@ -166,6 +246,5 @@ def main(comm, mod):
|
||||
if __name__ == "__main__":
|
||||
from mpi4py import MPI
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
main(comm, rank)
|
||||
main(comm.Get_size(), comm.Get_rank())
|
||||
|
||||
|
||||
@ -14,9 +14,9 @@ class Config:
|
||||
self.env = env
|
||||
if env == "spark":CF.read("./cv.cnf")
|
||||
|
||||
def get(self, key):
|
||||
def get(self, key, default=None):
|
||||
global CF
|
||||
return CF.get(self.env, key)
|
||||
return CF[self.env].get(key, default)
|
||||
|
||||
def init(env):
|
||||
return Config(env)
|
||||
|
||||
@ -49,7 +49,11 @@ class Postgres(object):
|
||||
cur = self.conn.cursor()
|
||||
cur.execute(sql)
|
||||
updated_rows = cur.rowcount
|
||||
<<<<<<< HEAD
|
||||
self.conn.commit()
|
||||
=======
|
||||
conn.commit()
|
||||
>>>>>>> upstream/main
|
||||
cur.close()
|
||||
return updated_rows
|
||||
except Exception as e:
|
||||
|
||||
@ -5,10 +5,10 @@ import time
|
||||
import copy
|
||||
import elasticsearch
|
||||
from elasticsearch import Elasticsearch
|
||||
from elasticsearch_dsl import UpdateByQuery, Search, Index
|
||||
from elasticsearch_dsl import UpdateByQuery, Search, Index, Q
|
||||
from util import config
|
||||
|
||||
print("Elasticsearch version: ", elasticsearch.__version__)
|
||||
logging.info("Elasticsearch version: ", elasticsearch.__version__)
|
||||
|
||||
|
||||
def instance(env):
|
||||
@ -20,7 +20,7 @@ def instance(env):
|
||||
timeout=600
|
||||
)
|
||||
|
||||
print("ES: ", ES_DRESS, ES.info())
|
||||
logging.info("ES: ", ES_DRESS, ES.info())
|
||||
|
||||
return ES
|
||||
|
||||
@ -31,7 +31,7 @@ class HuEs:
|
||||
self.info = {}
|
||||
self.config = config.init(env)
|
||||
self.conn()
|
||||
self.idxnm = self.config.get("idx_nm","")
|
||||
self.idxnm = self.config.get("idx_nm", "")
|
||||
if not self.es.ping():
|
||||
raise Exception("Can't connect to ES cluster")
|
||||
|
||||
@ -46,6 +46,7 @@ class HuEs:
|
||||
break
|
||||
except Exception as e:
|
||||
logging.error("Fail to connect to es: " + str(e))
|
||||
time.sleep(1)
|
||||
|
||||
def version(self):
|
||||
v = self.info.get("version", {"number": "5.6"})
|
||||
@ -121,7 +122,6 @@ class HuEs:
|
||||
acts.append(
|
||||
{"update": {"_id": id, "_index": ids[id]["_index"]}, "retry_on_conflict": 100})
|
||||
acts.append({"doc": d, "doc_as_upsert": "true"})
|
||||
logging.info("bulk upsert: %s" % id)
|
||||
|
||||
res = []
|
||||
for _ in range(100):
|
||||
@ -148,7 +148,6 @@ class HuEs:
|
||||
return res
|
||||
except Exception as e:
|
||||
logging.warn("Fail to bulk: " + str(e))
|
||||
print(e)
|
||||
if re.search(r"(Timeout|time out)", str(e), re.IGNORECASE):
|
||||
time.sleep(3)
|
||||
continue
|
||||
@ -229,7 +228,7 @@ class HuEs:
|
||||
return False
|
||||
|
||||
def search(self, q, idxnm=None, src=False, timeout="2s"):
|
||||
print(json.dumps(q, ensure_ascii=False))
|
||||
if not isinstance(q, dict): q = Search().query(q).to_dict()
|
||||
for i in range(3):
|
||||
try:
|
||||
res = self.es.search(index=(self.idxnm if not idxnm else idxnm),
|
||||
@ -271,9 +270,31 @@ class HuEs:
|
||||
str(e) + "【Q】:" + str(q.to_dict()))
|
||||
if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0:
|
||||
continue
|
||||
self.conn()
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def updateScriptByQuery(self, q, scripts, idxnm=None):
|
||||
ubq = UpdateByQuery(index=self.idxnm if not idxnm else idxnm).using(self.es).query(q)
|
||||
ubq = ubq.script(source=scripts)
|
||||
ubq = ubq.params(refresh=True)
|
||||
ubq = ubq.params(slices=5)
|
||||
ubq = ubq.params(conflicts="proceed")
|
||||
for i in range(3):
|
||||
try:
|
||||
r = ubq.execute()
|
||||
return True
|
||||
except Exception as e:
|
||||
logging.error("ES updateByQuery exception: " +
|
||||
str(e) + "【Q】:" + str(q.to_dict()))
|
||||
if str(e).find("Timeout") > 0 or str(e).find("Conflict") > 0:
|
||||
continue
|
||||
self.conn()
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def deleteByQuery(self, query, idxnm=""):
|
||||
for i in range(3):
|
||||
try:
|
||||
@ -307,7 +328,6 @@ class HuEs:
|
||||
routing=routing, refresh=False) # , doc_type="_doc")
|
||||
return True
|
||||
except Exception as e:
|
||||
print(e)
|
||||
logging.error("ES update exception: " + str(e) + " id:" + str(id) + ", version:" + str(self.version()) +
|
||||
json.dumps(script, ensure_ascii=False))
|
||||
if str(e).find("Timeout") > 0:
|
||||
|
||||
73
python/util/minio_conn.py
Normal file
73
python/util/minio_conn.py
Normal file
@ -0,0 +1,73 @@
|
||||
import logging
|
||||
import time
|
||||
from util import config
|
||||
from minio import Minio
|
||||
from io import BytesIO
|
||||
|
||||
class HuMinio(object):
|
||||
def __init__(self, env):
|
||||
self.config = config.init(env)
|
||||
self.conn = None
|
||||
self.__open__()
|
||||
|
||||
def __open__(self):
|
||||
try:
|
||||
if self.conn:self.__close__()
|
||||
except Exception as e:
|
||||
pass
|
||||
|
||||
try:
|
||||
self.conn = Minio(self.config.get("minio_host"),
|
||||
access_key=self.config.get("minio_usr"),
|
||||
secret_key=self.config.get("minio_pwd"),
|
||||
secure=False
|
||||
)
|
||||
except Exception as e:
|
||||
logging.error("Fail to connect %s "%self.config.get("minio_host") + str(e))
|
||||
|
||||
|
||||
def __close__(self):
|
||||
del self.conn
|
||||
self.conn = None
|
||||
|
||||
|
||||
def put(self, bucket, fnm, binary):
|
||||
for _ in range(10):
|
||||
try:
|
||||
if not self.conn.bucket_exists(bucket):
|
||||
self.conn.make_bucket(bucket)
|
||||
|
||||
r = self.conn.put_object(bucket, fnm,
|
||||
BytesIO(binary),
|
||||
len(binary)
|
||||
)
|
||||
return r
|
||||
except Exception as e:
|
||||
logging.error(f"Fail put {bucket}/{fnm}: "+str(e))
|
||||
self.__open__()
|
||||
time.sleep(1)
|
||||
|
||||
|
||||
def get(self, bucket, fnm):
|
||||
for _ in range(10):
|
||||
try:
|
||||
r = self.conn.get_object(bucket, fnm)
|
||||
return r.read()
|
||||
except Exception as e:
|
||||
logging.error(f"Fail get {bucket}/{fnm}: "+str(e))
|
||||
self.__open__()
|
||||
time.sleep(1)
|
||||
return
|
||||
|
||||
if __name__ == "__main__":
|
||||
conn = HuMinio("infiniflow")
|
||||
fnm = "/opt/home/kevinhu/docgpt/upload/13/11-408.jpg"
|
||||
from PIL import Image
|
||||
img = Image.open(fnm)
|
||||
buff = BytesIO()
|
||||
img.save(buff, format='JPEG')
|
||||
print(conn.put("test", "11-408.jpg", buff.getvalue()))
|
||||
bts = conn.get("test", "11-408.jpg")
|
||||
img = Image.open(BytesIO(bts))
|
||||
img.save("test.jpg")
|
||||
|
||||
Reference in New Issue
Block a user