mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Move some vars to globals (#11017)
### What problem does this PR solve? As title. ### Type of change - [x] Refactoring --------- Signed-off-by: Jin Hai <haijin.chn@gmail.com>
This commit is contained in:
@ -35,7 +35,6 @@ from api.db import VALID_FILE_TYPES
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.db_models import File
|
||||
from api.utils.api_utils import get_json_result
|
||||
from api import settings
|
||||
from rag.nlp import search
|
||||
from api.constants import DATASET_NAME_LIMIT
|
||||
from rag.settings import PAGERANK_FLD
|
||||
@ -43,7 +42,7 @@ from rag.utils.redis_conn import REDIS_CONN
|
||||
from rag.utils.storage_factory import STORAGE_IMPL
|
||||
from rag.utils.doc_store_conn import OrderByExpr
|
||||
from common.constants import RetCode, PipelineTaskType, StatusEnum, VALID_TASK_STATUS, FileSource, LLMType
|
||||
|
||||
from common import globals
|
||||
|
||||
@manager.route('/create', methods=['post']) # noqa: F821
|
||||
@login_required
|
||||
@ -110,11 +109,11 @@ def update():
|
||||
|
||||
if kb.pagerank != req.get("pagerank", 0):
|
||||
if req.get("pagerank", 0) > 0:
|
||||
settings.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
|
||||
globals.docStoreConn.update({"kb_id": kb.id}, {PAGERANK_FLD: req["pagerank"]},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
else:
|
||||
# Elasticsearch requires PAGERANK_FLD be non-zero!
|
||||
settings.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
|
||||
globals.docStoreConn.update({"exists": PAGERANK_FLD}, {"remove": PAGERANK_FLD},
|
||||
search.index_name(kb.tenant_id), kb.id)
|
||||
|
||||
e, kb = KnowledgebaseService.get_by_id(kb.id)
|
||||
@ -226,8 +225,8 @@ def rm():
|
||||
return get_data_error_result(
|
||||
message="Database error (Knowledgebase removal)!")
|
||||
for kb in kbs:
|
||||
settings.docStoreConn.delete({"kb_id": kb.id}, search.index_name(kb.tenant_id), kb.id)
|
||||
settings.docStoreConn.deleteIdx(search.index_name(kb.tenant_id), kb.id)
|
||||
globals.docStoreConn.delete({"kb_id": kb.id}, search.index_name(kb.tenant_id), kb.id)
|
||||
globals.docStoreConn.deleteIdx(search.index_name(kb.tenant_id), kb.id)
|
||||
if hasattr(STORAGE_IMPL, 'remove_bucket'):
|
||||
STORAGE_IMPL.remove_bucket(kb.id)
|
||||
return get_json_result(data=True)
|
||||
@ -248,7 +247,7 @@ def list_tags(kb_id):
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], [kb_id])
|
||||
tags += globals.retriever.all_tags(tenant["tenant_id"], [kb_id])
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -267,7 +266,7 @@ def list_tags_from_kbs():
|
||||
tenants = UserTenantService.get_tenants_by_user_id(current_user.id)
|
||||
tags = []
|
||||
for tenant in tenants:
|
||||
tags += settings.retriever.all_tags(tenant["tenant_id"], kb_ids)
|
||||
tags += globals.retriever.all_tags(tenant["tenant_id"], kb_ids)
|
||||
return get_json_result(data=tags)
|
||||
|
||||
|
||||
@ -284,7 +283,7 @@ def rm_tags(kb_id):
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
|
||||
for t in req["tags"]:
|
||||
settings.docStoreConn.update({"tag_kwd": t, "kb_id": [kb_id]},
|
||||
globals.docStoreConn.update({"tag_kwd": t, "kb_id": [kb_id]},
|
||||
{"remove": {"tag_kwd": t}},
|
||||
search.index_name(kb.tenant_id),
|
||||
kb_id)
|
||||
@ -303,7 +302,7 @@ def rename_tags(kb_id):
|
||||
)
|
||||
e, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
|
||||
settings.docStoreConn.update({"tag_kwd": req["from_tag"], "kb_id": [kb_id]},
|
||||
globals.docStoreConn.update({"tag_kwd": req["from_tag"], "kb_id": [kb_id]},
|
||||
{"remove": {"tag_kwd": req["from_tag"].strip()}, "add": {"tag_kwd": req["to_tag"]}},
|
||||
search.index_name(kb.tenant_id),
|
||||
kb_id)
|
||||
@ -326,9 +325,9 @@ def knowledge_graph(kb_id):
|
||||
}
|
||||
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
if not settings.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
|
||||
if not globals.docStoreConn.indexExist(search.index_name(kb.tenant_id), kb_id):
|
||||
return get_json_result(data=obj)
|
||||
sres = settings.retriever.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
sres = globals.retriever.search(req, search.index_name(kb.tenant_id), [kb_id])
|
||||
if not len(sres.ids):
|
||||
return get_json_result(data=obj)
|
||||
|
||||
@ -360,7 +359,7 @@ def delete_knowledge_graph(kb_id):
|
||||
code=RetCode.AUTHENTICATION_ERROR
|
||||
)
|
||||
_, kb = KnowledgebaseService.get_by_id(kb_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
globals.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
|
||||
return get_json_result(data=True)
|
||||
|
||||
@ -732,13 +731,13 @@ def delete_kb_task():
|
||||
task_id = kb.graphrag_task_id
|
||||
kb_task_finish_at = "graphrag_task_finish_at"
|
||||
cancel_task(task_id)
|
||||
settings.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
globals.docStoreConn.delete({"knowledge_graph_kwd": ["graph", "subgraph", "entity", "relation"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
case PipelineTaskType.RAPTOR:
|
||||
kb_task_id_field = "raptor_task_id"
|
||||
task_id = kb.raptor_task_id
|
||||
kb_task_finish_at = "raptor_task_finish_at"
|
||||
cancel_task(task_id)
|
||||
settings.docStoreConn.delete({"raptor_kwd": ["raptor"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
globals.docStoreConn.delete({"raptor_kwd": ["raptor"]}, search.index_name(kb.tenant_id), kb_id)
|
||||
case PipelineTaskType.MINDMAP:
|
||||
kb_task_id_field = "mindmap_task_id"
|
||||
task_id = kb.mindmap_task_id
|
||||
@ -850,7 +849,7 @@ def check_embedding():
|
||||
tenant_id = kb.tenant_id
|
||||
|
||||
emb_mdl = LLMBundle(tenant_id, LLMType.EMBEDDING, embd_id)
|
||||
samples = sample_random_chunks_with_vectors(settings.docStoreConn, tenant_id=tenant_id, kb_id=kb_id, n=n)
|
||||
samples = sample_random_chunks_with_vectors(globals.docStoreConn, tenant_id=tenant_id, kb_id=kb_id, n=n)
|
||||
|
||||
results, eff_sims = [], []
|
||||
for ck in samples:
|
||||
|
||||
Reference in New Issue
Block a user