mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Add graphrag (#1793)
### What problem does this PR solve? #1594 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
137
graphrag/mind_map_extractor.py
Normal file
137
graphrag/mind_map_extractor.py
Normal file
@ -0,0 +1,137 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import logging
|
||||
import traceback
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from dataclasses import dataclass
|
||||
from typing import Any
|
||||
|
||||
from graphrag.mind_map_prompt import MIND_MAP_EXTRACTION_PROMPT
|
||||
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements
|
||||
from rag.llm.chat_model import Base as CompletionLLM
|
||||
import markdown_to_json
|
||||
from functools import reduce
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
|
||||
@dataclass
|
||||
class MindMapResult:
|
||||
"""Unipartite Mind Graph result class definition."""
|
||||
output: dict
|
||||
|
||||
|
||||
class MindMapExtractor:
|
||||
|
||||
_llm: CompletionLLM
|
||||
_input_text_key: str
|
||||
_mind_map_prompt: str
|
||||
_on_error: ErrorHandlerFn
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_invoker: CompletionLLM,
|
||||
prompt: str | None = None,
|
||||
input_text_key: str | None = None,
|
||||
on_error: ErrorHandlerFn | None = None,
|
||||
):
|
||||
"""Init method definition."""
|
||||
# TODO: streamline construction
|
||||
self._llm = llm_invoker
|
||||
self._input_text_key = input_text_key or "input_text"
|
||||
self._mind_map_prompt = prompt or MIND_MAP_EXTRACTION_PROMPT
|
||||
self._on_error = on_error or (lambda _e, _s, _d: None)
|
||||
|
||||
def __call__(
|
||||
self, sections: list[str], prompt_variables: dict[str, Any] | None = None
|
||||
) -> MindMapResult:
|
||||
"""Call method definition."""
|
||||
if prompt_variables is None:
|
||||
prompt_variables = {}
|
||||
|
||||
try:
|
||||
exe = ThreadPoolExecutor(max_workers=12)
|
||||
threads = []
|
||||
token_count = self._llm.max_length * 0.7
|
||||
texts = []
|
||||
res = []
|
||||
cnt = 0
|
||||
for i in range(len(sections)):
|
||||
section_cnt = num_tokens_from_string(sections[i])
|
||||
if cnt + section_cnt >= token_count and texts:
|
||||
threads.append(exe.submit(self._process_document, "".join(texts), prompt_variables))
|
||||
texts = []
|
||||
cnt = 0
|
||||
texts.append(sections[i])
|
||||
cnt += section_cnt
|
||||
if texts:
|
||||
threads.append(exe.submit(self._process_document, "".join(texts), prompt_variables))
|
||||
|
||||
for i, _ in enumerate(threads):
|
||||
res.append(_.result())
|
||||
|
||||
merge_json = reduce(self._merge, res)
|
||||
merge_json = self._list_to_kv(merge_json)
|
||||
except Exception as e:
|
||||
logging.exception("error mind graph")
|
||||
self._on_error(
|
||||
e,
|
||||
traceback.format_exc(), None
|
||||
)
|
||||
|
||||
return MindMapResult(output=merge_json)
|
||||
|
||||
def _merge(self, d1, d2):
|
||||
for k in d1:
|
||||
if k in d2:
|
||||
if isinstance(d1[k], dict) and isinstance(d2[k], dict):
|
||||
self._merge(d1[k], d2[k])
|
||||
elif isinstance(d1[k], list) and isinstance(d2[k], list):
|
||||
d2[k].extend(d1[k])
|
||||
else:
|
||||
d2[k] = d1[k]
|
||||
else:
|
||||
d2[k] = d1[k]
|
||||
|
||||
return d2
|
||||
|
||||
def _list_to_kv(self, data):
|
||||
for key, value in data.items():
|
||||
if isinstance(value, dict):
|
||||
self._list_to_kv(value)
|
||||
elif isinstance(value, list):
|
||||
new_value = {}
|
||||
for i in range(len(value)):
|
||||
if isinstance(value[i], list):
|
||||
new_value[value[i - 1]] = value[i][0]
|
||||
data[key] = new_value
|
||||
else:
|
||||
continue
|
||||
return data
|
||||
|
||||
def _process_document(
|
||||
self, text: str, prompt_variables: dict[str, str]
|
||||
) -> str:
|
||||
variables = {
|
||||
**prompt_variables,
|
||||
self._input_text_key: text,
|
||||
}
|
||||
text = perform_variable_replacements(self._mind_map_prompt, variables=variables)
|
||||
gen_conf = {"temperature": 0.5}
|
||||
response = self._llm.chat(text, [], gen_conf)
|
||||
print(response)
|
||||
print("---------------------------------------------------\n", markdown_to_json.dictify(response))
|
||||
return dict(markdown_to_json.dictify(response))
|
||||
Reference in New Issue
Block a user