mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Add graphrag (#1793)
### What problem does this PR solve? #1594 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
319
graphrag/graph_extractor.py
Normal file
319
graphrag/graph_extractor.py
Normal file
@ -0,0 +1,319 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
Reference:
|
||||
- [graphrag](https://github.com/microsoft/graphrag)
|
||||
"""
|
||||
import logging
|
||||
import numbers
|
||||
import re
|
||||
import traceback
|
||||
from dataclasses import dataclass
|
||||
from typing import Any, Mapping
|
||||
import tiktoken
|
||||
from graphrag.graph_prompt import GRAPH_EXTRACTION_PROMPT, CONTINUE_PROMPT, LOOP_PROMPT
|
||||
from graphrag.utils import ErrorHandlerFn, perform_variable_replacements, clean_str
|
||||
from rag.llm.chat_model import Base as CompletionLLM
|
||||
import networkx as nx
|
||||
from rag.utils import num_tokens_from_string
|
||||
|
||||
DEFAULT_TUPLE_DELIMITER = "<|>"
|
||||
DEFAULT_RECORD_DELIMITER = "##"
|
||||
DEFAULT_COMPLETION_DELIMITER = "<|COMPLETE|>"
|
||||
DEFAULT_ENTITY_TYPES = ["organization", "person", "location", "event", "time"]
|
||||
ENTITY_EXTRACTION_MAX_GLEANINGS = 1
|
||||
|
||||
|
||||
@dataclass
|
||||
class GraphExtractionResult:
|
||||
"""Unipartite graph extraction result class definition."""
|
||||
|
||||
output: nx.Graph
|
||||
source_docs: dict[Any, Any]
|
||||
|
||||
|
||||
class GraphExtractor:
|
||||
"""Unipartite graph extractor class definition."""
|
||||
|
||||
_llm: CompletionLLM
|
||||
_join_descriptions: bool
|
||||
_tuple_delimiter_key: str
|
||||
_record_delimiter_key: str
|
||||
_entity_types_key: str
|
||||
_input_text_key: str
|
||||
_completion_delimiter_key: str
|
||||
_entity_name_key: str
|
||||
_input_descriptions_key: str
|
||||
_extraction_prompt: str
|
||||
_summarization_prompt: str
|
||||
_loop_args: dict[str, Any]
|
||||
_max_gleanings: int
|
||||
_on_error: ErrorHandlerFn
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
llm_invoker: CompletionLLM,
|
||||
prompt: str | None = None,
|
||||
tuple_delimiter_key: str | None = None,
|
||||
record_delimiter_key: str | None = None,
|
||||
input_text_key: str | None = None,
|
||||
entity_types_key: str | None = None,
|
||||
completion_delimiter_key: str | None = None,
|
||||
join_descriptions=True,
|
||||
encoding_model: str | None = None,
|
||||
max_gleanings: int | None = None,
|
||||
on_error: ErrorHandlerFn | None = None,
|
||||
):
|
||||
"""Init method definition."""
|
||||
# TODO: streamline construction
|
||||
self._llm = llm_invoker
|
||||
self._join_descriptions = join_descriptions
|
||||
self._input_text_key = input_text_key or "input_text"
|
||||
self._tuple_delimiter_key = tuple_delimiter_key or "tuple_delimiter"
|
||||
self._record_delimiter_key = record_delimiter_key or "record_delimiter"
|
||||
self._completion_delimiter_key = (
|
||||
completion_delimiter_key or "completion_delimiter"
|
||||
)
|
||||
self._entity_types_key = entity_types_key or "entity_types"
|
||||
self._extraction_prompt = prompt or GRAPH_EXTRACTION_PROMPT
|
||||
self._max_gleanings = (
|
||||
max_gleanings
|
||||
if max_gleanings is not None
|
||||
else ENTITY_EXTRACTION_MAX_GLEANINGS
|
||||
)
|
||||
self._on_error = on_error or (lambda _e, _s, _d: None)
|
||||
self.prompt_token_count = num_tokens_from_string(self._extraction_prompt)
|
||||
|
||||
# Construct the looping arguments
|
||||
encoding = tiktoken.get_encoding(encoding_model or "cl100k_base")
|
||||
yes = encoding.encode("YES")
|
||||
no = encoding.encode("NO")
|
||||
self._loop_args = {"logit_bias": {yes[0]: 100, no[0]: 100}, "max_tokens": 1}
|
||||
|
||||
def __call__(
|
||||
self, texts: list[str], prompt_variables: dict[str, Any] | None = None
|
||||
) -> GraphExtractionResult:
|
||||
"""Call method definition."""
|
||||
if prompt_variables is None:
|
||||
prompt_variables = {}
|
||||
all_records: dict[int, str] = {}
|
||||
source_doc_map: dict[int, str] = {}
|
||||
|
||||
# Wire defaults into the prompt variables
|
||||
prompt_variables = {
|
||||
**prompt_variables,
|
||||
self._tuple_delimiter_key: prompt_variables.get(self._tuple_delimiter_key)
|
||||
or DEFAULT_TUPLE_DELIMITER,
|
||||
self._record_delimiter_key: prompt_variables.get(self._record_delimiter_key)
|
||||
or DEFAULT_RECORD_DELIMITER,
|
||||
self._completion_delimiter_key: prompt_variables.get(
|
||||
self._completion_delimiter_key
|
||||
)
|
||||
or DEFAULT_COMPLETION_DELIMITER,
|
||||
self._entity_types_key: ",".join(
|
||||
prompt_variables.get(self._entity_types_key) or DEFAULT_ENTITY_TYPES
|
||||
),
|
||||
}
|
||||
|
||||
for doc_index, text in enumerate(texts):
|
||||
try:
|
||||
# Invoke the entity extraction
|
||||
result = self._process_document(text, prompt_variables)
|
||||
source_doc_map[doc_index] = text
|
||||
all_records[doc_index] = result
|
||||
except Exception as e:
|
||||
logging.exception("error extracting graph")
|
||||
self._on_error(
|
||||
e,
|
||||
traceback.format_exc(),
|
||||
{
|
||||
"doc_index": doc_index,
|
||||
"text": text,
|
||||
},
|
||||
)
|
||||
|
||||
output = self._process_results(
|
||||
all_records,
|
||||
prompt_variables.get(self._tuple_delimiter_key, DEFAULT_TUPLE_DELIMITER),
|
||||
prompt_variables.get(self._record_delimiter_key, DEFAULT_RECORD_DELIMITER),
|
||||
)
|
||||
|
||||
return GraphExtractionResult(
|
||||
output=output,
|
||||
source_docs=source_doc_map,
|
||||
)
|
||||
|
||||
def _process_document(
|
||||
self, text: str, prompt_variables: dict[str, str]
|
||||
) -> str:
|
||||
variables = {
|
||||
**prompt_variables,
|
||||
self._input_text_key: text,
|
||||
}
|
||||
text = perform_variable_replacements(self._extraction_prompt, variables=variables)
|
||||
gen_conf = {"temperature": 0.5}
|
||||
response = self._llm.chat(text, [], gen_conf)
|
||||
|
||||
results = response or ""
|
||||
history = [{"role": "system", "content": text}, {"role": "assistant", "content": response}]
|
||||
|
||||
# Repeat to ensure we maximize entity count
|
||||
for i in range(self._max_gleanings):
|
||||
text = perform_variable_replacements(CONTINUE_PROMPT, history=history, variables=variables)
|
||||
history.append({"role": "user", "content": text})
|
||||
response = self._llm.chat("", history, gen_conf)
|
||||
results += response or ""
|
||||
|
||||
# if this is the final glean, don't bother updating the continuation flag
|
||||
if i >= self._max_gleanings - 1:
|
||||
break
|
||||
history.append({"role": "assistant", "content": response})
|
||||
history.append({"role": "user", "content": LOOP_PROMPT})
|
||||
continuation = self._llm.chat("", history, self._loop_args)
|
||||
if continuation != "YES":
|
||||
break
|
||||
|
||||
return results
|
||||
|
||||
def _process_results(
|
||||
self,
|
||||
results: dict[int, str],
|
||||
tuple_delimiter: str,
|
||||
record_delimiter: str,
|
||||
) -> nx.Graph:
|
||||
"""Parse the result string to create an undirected unipartite graph.
|
||||
|
||||
Args:
|
||||
- results - dict of results from the extraction chain
|
||||
- tuple_delimiter - delimiter between tuples in an output record, default is '<|>'
|
||||
- record_delimiter - delimiter between records, default is '##'
|
||||
Returns:
|
||||
- output - unipartite graph in graphML format
|
||||
"""
|
||||
graph = nx.Graph()
|
||||
for source_doc_id, extracted_data in results.items():
|
||||
records = [r.strip() for r in extracted_data.split(record_delimiter)]
|
||||
|
||||
for record in records:
|
||||
record = re.sub(r"^\(|\)$", "", record.strip())
|
||||
record_attributes = record.split(tuple_delimiter)
|
||||
|
||||
if record_attributes[0] == '"entity"' and len(record_attributes) >= 4:
|
||||
# add this record as a node in the G
|
||||
entity_name = clean_str(record_attributes[1].upper())
|
||||
entity_type = clean_str(record_attributes[2].upper())
|
||||
entity_description = clean_str(record_attributes[3])
|
||||
|
||||
if entity_name in graph.nodes():
|
||||
node = graph.nodes[entity_name]
|
||||
if self._join_descriptions:
|
||||
node["description"] = "\n".join(
|
||||
list({
|
||||
*_unpack_descriptions(node),
|
||||
entity_description,
|
||||
})
|
||||
)
|
||||
else:
|
||||
if len(entity_description) > len(node["description"]):
|
||||
node["description"] = entity_description
|
||||
node["source_id"] = ", ".join(
|
||||
list({
|
||||
*_unpack_source_ids(node),
|
||||
str(source_doc_id),
|
||||
})
|
||||
)
|
||||
node["entity_type"] = (
|
||||
entity_type if entity_type != "" else node["entity_type"]
|
||||
)
|
||||
else:
|
||||
graph.add_node(
|
||||
entity_name,
|
||||
entity_type=entity_type,
|
||||
description=entity_description,
|
||||
source_id=str(source_doc_id),
|
||||
weight=1
|
||||
)
|
||||
|
||||
if (
|
||||
record_attributes[0] == '"relationship"'
|
||||
and len(record_attributes) >= 5
|
||||
):
|
||||
# add this record as edge
|
||||
source = clean_str(record_attributes[1].upper())
|
||||
target = clean_str(record_attributes[2].upper())
|
||||
edge_description = clean_str(record_attributes[3])
|
||||
edge_source_id = clean_str(str(source_doc_id))
|
||||
weight = (
|
||||
float(record_attributes[-1])
|
||||
if isinstance(record_attributes[-1], numbers.Number)
|
||||
else 1.0
|
||||
)
|
||||
if source not in graph.nodes():
|
||||
graph.add_node(
|
||||
source,
|
||||
entity_type="",
|
||||
description="",
|
||||
source_id=edge_source_id,
|
||||
weight=1
|
||||
)
|
||||
if target not in graph.nodes():
|
||||
graph.add_node(
|
||||
target,
|
||||
entity_type="",
|
||||
description="",
|
||||
source_id=edge_source_id,
|
||||
weight=1
|
||||
)
|
||||
if graph.has_edge(source, target):
|
||||
edge_data = graph.get_edge_data(source, target)
|
||||
if edge_data is not None:
|
||||
weight += edge_data["weight"]
|
||||
if self._join_descriptions:
|
||||
edge_description = "\n".join(
|
||||
list({
|
||||
*_unpack_descriptions(edge_data),
|
||||
edge_description,
|
||||
})
|
||||
)
|
||||
edge_source_id = ", ".join(
|
||||
list({
|
||||
*_unpack_source_ids(edge_data),
|
||||
str(source_doc_id),
|
||||
})
|
||||
)
|
||||
graph.add_edge(
|
||||
source,
|
||||
target,
|
||||
weight=weight,
|
||||
description=edge_description,
|
||||
source_id=edge_source_id,
|
||||
)
|
||||
|
||||
for node_degree in graph.degree:
|
||||
graph.nodes[str(node_degree[0])]["rank"] = int(node_degree[1])
|
||||
return graph
|
||||
|
||||
|
||||
def _unpack_descriptions(data: Mapping) -> list[str]:
|
||||
value = data.get("description", None)
|
||||
return [] if value is None else value.split("\n")
|
||||
|
||||
|
||||
def _unpack_source_ids(data: Mapping) -> list[str]:
|
||||
value = data.get("source_id", None)
|
||||
return [] if value is None else value.split(", ")
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user