mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Add graphrag (#1793)
### What problem does this PR solve? #1594 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
78
graphrag/entity_embedding.py
Normal file
78
graphrag/entity_embedding.py
Normal file
@ -0,0 +1,78 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
"""
|
||||
Reference:
|
||||
- [graphrag](https://github.com/microsoft/graphrag)
|
||||
"""
|
||||
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import networkx as nx
|
||||
from graphrag.leiden import stable_largest_connected_component
|
||||
|
||||
|
||||
@dataclass
|
||||
class NodeEmbeddings:
|
||||
"""Node embeddings class definition."""
|
||||
|
||||
nodes: list[str]
|
||||
embeddings: np.ndarray
|
||||
|
||||
|
||||
def embed_nod2vec(
|
||||
graph: nx.Graph | nx.DiGraph,
|
||||
dimensions: int = 1536,
|
||||
num_walks: int = 10,
|
||||
walk_length: int = 40,
|
||||
window_size: int = 2,
|
||||
iterations: int = 3,
|
||||
random_seed: int = 86,
|
||||
) -> NodeEmbeddings:
|
||||
"""Generate node embeddings using Node2Vec."""
|
||||
# generate embedding
|
||||
lcc_tensors = gc.embed.node2vec_embed( # type: ignore
|
||||
graph=graph,
|
||||
dimensions=dimensions,
|
||||
window_size=window_size,
|
||||
iterations=iterations,
|
||||
num_walks=num_walks,
|
||||
walk_length=walk_length,
|
||||
random_seed=random_seed,
|
||||
)
|
||||
return NodeEmbeddings(embeddings=lcc_tensors[0], nodes=lcc_tensors[1])
|
||||
|
||||
|
||||
def run(graph: nx.Graph, args: dict[str, Any]) -> NodeEmbeddings:
|
||||
"""Run method definition."""
|
||||
if args.get("use_lcc", True):
|
||||
graph = stable_largest_connected_component(graph)
|
||||
|
||||
# create graph embedding using node2vec
|
||||
embeddings = embed_nod2vec(
|
||||
graph=graph,
|
||||
dimensions=args.get("dimensions", 1536),
|
||||
num_walks=args.get("num_walks", 10),
|
||||
walk_length=args.get("walk_length", 40),
|
||||
window_size=args.get("window_size", 2),
|
||||
iterations=args.get("iterations", 3),
|
||||
random_seed=args.get("random_seed", 86),
|
||||
)
|
||||
|
||||
pairs = zip(embeddings.nodes, embeddings.embeddings.tolist(), strict=True)
|
||||
sorted_pairs = sorted(pairs, key=lambda x: x[0])
|
||||
|
||||
return dict(sorted_pairs)
|
||||
Reference in New Issue
Block a user