Add graphrag (#1793)

### What problem does this PR solve?

#1594

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2024-08-02 18:51:14 +08:00
committed by GitHub
parent 80032b1fc0
commit 152072f900
74 changed files with 2522 additions and 105 deletions

View File

@ -18,12 +18,12 @@ import json
import re
from copy import deepcopy
from api.db import LLMType
from api.db import LLMType, ParserType
from api.db.db_models import Dialog, Conversation
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler
from api.settings import chat_logger, retrievaler, kg_retrievaler
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp import keyword_extraction
from rag.nlp.search import index_name
@ -101,6 +101,9 @@ def chat(dialog, messages, stream=True, **kwargs):
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
retr = retrievaler if not is_kg else kg_retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
if llm_id2llm_type(dialog.llm_id) == "image2text":
@ -138,7 +141,7 @@ def chat(dialog, messages, stream=True, **kwargs):
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
@ -147,7 +150,7 @@ def chat(dialog, messages, stream=True, **kwargs):
#self-rag
if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
@ -179,7 +182,7 @@ def chat(dialog, messages, stream=True, **kwargs):
nonlocal prompt_config, knowledges, kwargs, kbinfos
refs = []
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retrievaler.insert_citations(answer,
answer, idx = retr.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]

View File

@ -139,6 +139,8 @@ def queue_tasks(doc, bucket, name):
page_size = doc["parser_config"].get("task_page_size", 22)
if doc["parser_id"] == "one":
page_size = 1000000000
if doc["parser_id"] == "knowledge_graph":
page_size = 1000000000
if not do_layout:
page_size = 1000000000
page_ranges = doc["parser_config"].get("pages")