Add graphrag (#1793)

### What problem does this PR solve?

#1594

### Type of change

- [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
Kevin Hu
2024-08-02 18:51:14 +08:00
committed by GitHub
parent 80032b1fc0
commit 152072f900
74 changed files with 2522 additions and 105 deletions

View File

@ -20,7 +20,7 @@ from datetime import datetime, timedelta
from flask import request, Response
from flask_login import login_required, current_user
from api.db import FileType, ParserType, FileSource, LLMType
from api.db import FileType, ParserType, FileSource
from api.db.db_models import APIToken, API4Conversation, Task, File
from api.db.services import duplicate_name
from api.db.services.api_service import APITokenService, API4ConversationService
@ -29,7 +29,6 @@ from api.db.services.document_service import DocumentService
from api.db.services.file2document_service import File2DocumentService
from api.db.services.file_service import FileService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import TenantLLMService
from api.db.services.task_service import queue_tasks, TaskService
from api.db.services.user_service import UserTenantService
from api.settings import RetCode, retrievaler
@ -38,7 +37,6 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
from itsdangerous import URLSafeTimedSerializer
from api.utils.file_utils import filename_type, thumbnail
from rag.nlp import keyword_extraction
from rag.utils.minio_conn import MINIO

View File

@ -15,15 +15,12 @@
#
import json
from functools import partial
from flask import request, Response
from flask_login import login_required, current_user
from api.db.db_models import UserCanvas
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
from api.utils import get_uuid
from api.utils.api_utils import get_json_result, server_error_response, validate_request
from graph.canvas import Canvas
from agent.canvas import Canvas
@manager.route('/templates', methods=['GET'])

View File

@ -14,6 +14,8 @@
# limitations under the License.
#
import datetime
import json
import traceback
from flask import request
from flask_login import login_required, current_user
@ -29,7 +31,7 @@ from api.db.services.llm_service import TenantLLMService
from api.db.services.user_service import UserTenantService
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
from api.db.services.document_service import DocumentService
from api.settings import RetCode, retrievaler
from api.settings import RetCode, retrievaler, kg_retrievaler
from api.utils.api_utils import get_json_result
import hashlib
import re
@ -61,7 +63,8 @@ def list_chunk():
for id in sres.ids:
d = {
"chunk_id": id,
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[id].get(
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
id].get(
"content_with_weight", ""),
"doc_id": sres.field[id]["doc_id"],
"docnm_kwd": sres.field[id]["docnm_kwd"],
@ -136,11 +139,11 @@ def set():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id)
e, doc = DocumentService.get_by_id(req["doc_id"])
if not e:
return get_data_error_result(retmsg="Document not found!")
@ -185,7 +188,7 @@ def switch():
@manager.route('/rm', methods=['POST'])
@login_required
@validate_request("chunk_ids","doc_id")
@validate_request("chunk_ids", "doc_id")
def rm():
req = request.json
try:
@ -230,11 +233,11 @@ def create():
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
if not tenant_id:
return get_data_error_result(retmsg="Tenant not found!")
embd_id = DocumentService.get_embd_id(req["doc_id"])
embd_mdl = TenantLLMService.model_instance(
tenant_id, LLMType.EMBEDDING.value, embd_id)
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
v = 0.1 * v[0] + 0.9 * v[1]
d["q_%d_vec" % len(v)] = v.tolist()
@ -277,9 +280,10 @@ def retrieval_test():
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
question += keyword_extraction(chat_mdl, question)
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
similarity_threshold, vector_similarity_weight, top,
doc_ids, rerank_mdl=rerank_mdl)
for c in ranks["chunks"]:
if "vector" in c:
del c["vector"]
@ -290,3 +294,25 @@ def retrieval_test():
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
retcode=RetCode.DATA_ERROR)
return server_error_response(e)
@manager.route('/knowledge_graph', methods=['GET'])
@login_required
def knowledge_graph():
doc_id = request.args["doc_id"]
req = {
"doc_ids":[doc_id],
"knowledge_graph_kwd": ["graph", "mind_map"]
}
tenant_id = DocumentService.get_tenant_id(doc_id)
sres = retrievaler.search(req, search.index_name(tenant_id))
obj = {"graph": {}, "mind_map": {}}
for id in sres.ids[:2]:
ty = sres.field[id]["knowledge_graph_kwd"]
try:
obj[ty] = json.loads(sres.field[id]["content_with_weight"])
except Exception as e:
print(traceback.format_exc(), flush=True)
return get_json_result(data=obj)

View File

@ -623,7 +623,7 @@ def doc_parse_callback(doc_id, prog=None, msg=""):
if cancel:
raise Exception("The parsing process has been cancelled!")
"""
def doc_parse(binary, doc_name, parser_name, tenant_id, doc_id):
match parser_name:
case "book":
@ -656,6 +656,7 @@ def doc_parse(binary, doc_name, parser_name, tenant_id, doc_id):
return False
return True
"""
@manager.route("/<dataset_id>/documents/<document_id>/status", methods=["POST"])

View File

@ -85,6 +85,7 @@ class ParserType(StrEnum):
PICTURE = "picture"
ONE = "one"
AUDIO = "audio"
KG = "knowledge_graph"
class FileSource(StrEnum):

View File

@ -122,7 +122,7 @@ def init_llm_factory():
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
TenantService.filter_update([1 == 1], {
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio"})
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph"})
## insert openai two embedding models to the current openai user.
print("Start to insert 2 OpenAI embedding models...")
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
@ -145,7 +145,7 @@ def init_llm_factory():
"""
drop table llm;
drop table llm_factories;
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio';
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph';
alter table knowledgebase modify avatar longtext;
alter table user modify avatar longtext;
alter table dialog modify icon longtext;
@ -153,7 +153,7 @@ def init_llm_factory():
def add_graph_templates():
dir = os.path.join(get_project_base_directory(), "graph", "templates")
dir = os.path.join(get_project_base_directory(), "agent", "templates")
for fnm in os.listdir(dir):
try:
cnvs = json.load(open(os.path.join(dir, fnm), "r"))

View File

@ -18,12 +18,12 @@ import json
import re
from copy import deepcopy
from api.db import LLMType
from api.db import LLMType, ParserType
from api.db.db_models import Dialog, Conversation
from api.db.services.common_service import CommonService
from api.db.services.knowledgebase_service import KnowledgebaseService
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
from api.settings import chat_logger, retrievaler
from api.settings import chat_logger, retrievaler, kg_retrievaler
from rag.app.resume import forbidden_select_fields4resume
from rag.nlp import keyword_extraction
from rag.nlp.search import index_name
@ -101,6 +101,9 @@ def chat(dialog, messages, stream=True, **kwargs):
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
retr = retrievaler if not is_kg else kg_retrievaler
questions = [m["content"] for m in messages if m["role"] == "user"]
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
if llm_id2llm_type(dialog.llm_id) == "image2text":
@ -138,7 +141,7 @@ def chat(dialog, messages, stream=True, **kwargs):
else:
if prompt_config.get("keyword", False):
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
@ -147,7 +150,7 @@ def chat(dialog, messages, stream=True, **kwargs):
#self-rag
if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
dialog.similarity_threshold,
dialog.vector_similarity_weight,
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
@ -179,7 +182,7 @@ def chat(dialog, messages, stream=True, **kwargs):
nonlocal prompt_config, knowledges, kwargs, kbinfos
refs = []
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
answer, idx = retrievaler.insert_citations(answer,
answer, idx = retr.insert_citations(answer,
[ck["content_ltks"]
for ck in kbinfos["chunks"]],
[ck["vector"]

View File

@ -139,6 +139,8 @@ def queue_tasks(doc, bucket, name):
page_size = doc["parser_config"].get("task_page_size", 22)
if doc["parser_id"] == "one":
page_size = 1000000000
if doc["parser_id"] == "knowledge_graph":
page_size = 1000000000
if not do_layout:
page_size = 1000000000
page_ranges = doc["parser_config"].get("pages")

View File

@ -34,6 +34,7 @@ chat_logger = getLogger("chat")
from rag.utils.es_conn import ELASTICSEARCH
from rag.nlp import search
from graphrag import search as kg_search
from api.utils import get_base_config, decrypt_database_config
API_VERSION = "v1"
@ -131,7 +132,7 @@ IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
API_KEY = LLM.get("api_key", "")
PARSERS = LLM.get(
"parsers",
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio")
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph")
# distribution
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)
@ -204,6 +205,7 @@ PRIVILEGE_COMMAND_WHITELIST = []
CHECK_NODES_IDENTITY = False
retrievaler = search.Dealer(ELASTICSEARCH)
kg_retrievaler = kg_search.KGSearch(ELASTICSEARCH)
class CustomEnum(Enum):