mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Add graphrag (#1793)
### What problem does this PR solve? #1594 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
@ -20,7 +20,7 @@ from datetime import datetime, timedelta
|
||||
from flask import request, Response
|
||||
from flask_login import login_required, current_user
|
||||
|
||||
from api.db import FileType, ParserType, FileSource, LLMType
|
||||
from api.db import FileType, ParserType, FileSource
|
||||
from api.db.db_models import APIToken, API4Conversation, Task, File
|
||||
from api.db.services import duplicate_name
|
||||
from api.db.services.api_service import APITokenService, API4ConversationService
|
||||
@ -29,7 +29,6 @@ from api.db.services.document_service import DocumentService
|
||||
from api.db.services.file2document_service import File2DocumentService
|
||||
from api.db.services.file_service import FileService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import TenantLLMService
|
||||
from api.db.services.task_service import queue_tasks, TaskService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.settings import RetCode, retrievaler
|
||||
@ -38,7 +37,6 @@ from api.utils.api_utils import server_error_response, get_data_error_result, ge
|
||||
from itsdangerous import URLSafeTimedSerializer
|
||||
|
||||
from api.utils.file_utils import filename_type, thumbnail
|
||||
from rag.nlp import keyword_extraction
|
||||
from rag.utils.minio_conn import MINIO
|
||||
|
||||
|
||||
|
||||
@ -15,15 +15,12 @@
|
||||
#
|
||||
import json
|
||||
from functools import partial
|
||||
|
||||
from flask import request, Response
|
||||
from flask_login import login_required, current_user
|
||||
|
||||
from api.db.db_models import UserCanvas
|
||||
from api.db.services.canvas_service import CanvasTemplateService, UserCanvasService
|
||||
from api.utils import get_uuid
|
||||
from api.utils.api_utils import get_json_result, server_error_response, validate_request
|
||||
from graph.canvas import Canvas
|
||||
from agent.canvas import Canvas
|
||||
|
||||
|
||||
@manager.route('/templates', methods=['GET'])
|
||||
|
||||
@ -14,6 +14,8 @@
|
||||
# limitations under the License.
|
||||
#
|
||||
import datetime
|
||||
import json
|
||||
import traceback
|
||||
|
||||
from flask import request
|
||||
from flask_login import login_required, current_user
|
||||
@ -29,7 +31,7 @@ from api.db.services.llm_service import TenantLLMService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.utils.api_utils import server_error_response, get_data_error_result, validate_request
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.settings import RetCode, retrievaler
|
||||
from api.settings import RetCode, retrievaler, kg_retrievaler
|
||||
from api.utils.api_utils import get_json_result
|
||||
import hashlib
|
||||
import re
|
||||
@ -61,7 +63,8 @@ def list_chunk():
|
||||
for id in sres.ids:
|
||||
d = {
|
||||
"chunk_id": id,
|
||||
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[id].get(
|
||||
"content_with_weight": rmSpace(sres.highlight[id]) if question and id in sres.highlight else sres.field[
|
||||
id].get(
|
||||
"content_with_weight", ""),
|
||||
"doc_id": sres.field[id]["doc_id"],
|
||||
"docnm_kwd": sres.field[id]["docnm_kwd"],
|
||||
@ -136,11 +139,11 @@ def set():
|
||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
||||
if not tenant_id:
|
||||
return get_data_error_result(retmsg="Tenant not found!")
|
||||
|
||||
|
||||
embd_id = DocumentService.get_embd_id(req["doc_id"])
|
||||
embd_mdl = TenantLLMService.model_instance(
|
||||
tenant_id, LLMType.EMBEDDING.value, embd_id)
|
||||
|
||||
|
||||
e, doc = DocumentService.get_by_id(req["doc_id"])
|
||||
if not e:
|
||||
return get_data_error_result(retmsg="Document not found!")
|
||||
@ -185,7 +188,7 @@ def switch():
|
||||
|
||||
@manager.route('/rm', methods=['POST'])
|
||||
@login_required
|
||||
@validate_request("chunk_ids","doc_id")
|
||||
@validate_request("chunk_ids", "doc_id")
|
||||
def rm():
|
||||
req = request.json
|
||||
try:
|
||||
@ -230,11 +233,11 @@ def create():
|
||||
tenant_id = DocumentService.get_tenant_id(req["doc_id"])
|
||||
if not tenant_id:
|
||||
return get_data_error_result(retmsg="Tenant not found!")
|
||||
|
||||
|
||||
embd_id = DocumentService.get_embd_id(req["doc_id"])
|
||||
embd_mdl = TenantLLMService.model_instance(
|
||||
tenant_id, LLMType.EMBEDDING.value, embd_id)
|
||||
|
||||
|
||||
v, c = embd_mdl.encode([doc.name, req["content_with_weight"]])
|
||||
v = 0.1 * v[0] + 0.9 * v[1]
|
||||
d["q_%d_vec" % len(v)] = v.tolist()
|
||||
@ -277,9 +280,10 @@ def retrieval_test():
|
||||
chat_mdl = TenantLLMService.model_instance(kb.tenant_id, LLMType.CHAT)
|
||||
question += keyword_extraction(chat_mdl, question)
|
||||
|
||||
ranks = retrievaler.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
|
||||
similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl)
|
||||
retr = retrievaler if kb.parser_id != ParserType.KG else kg_retrievaler
|
||||
ranks = retr.retrieval(question, embd_mdl, kb.tenant_id, [kb_id], page, size,
|
||||
similarity_threshold, vector_similarity_weight, top,
|
||||
doc_ids, rerank_mdl=rerank_mdl)
|
||||
for c in ranks["chunks"]:
|
||||
if "vector" in c:
|
||||
del c["vector"]
|
||||
@ -290,3 +294,25 @@ def retrieval_test():
|
||||
return get_json_result(data=False, retmsg=f'No chunk found! Check the chunk status please!',
|
||||
retcode=RetCode.DATA_ERROR)
|
||||
return server_error_response(e)
|
||||
|
||||
|
||||
@manager.route('/knowledge_graph', methods=['GET'])
|
||||
@login_required
|
||||
def knowledge_graph():
|
||||
doc_id = request.args["doc_id"]
|
||||
req = {
|
||||
"doc_ids":[doc_id],
|
||||
"knowledge_graph_kwd": ["graph", "mind_map"]
|
||||
}
|
||||
tenant_id = DocumentService.get_tenant_id(doc_id)
|
||||
sres = retrievaler.search(req, search.index_name(tenant_id))
|
||||
obj = {"graph": {}, "mind_map": {}}
|
||||
for id in sres.ids[:2]:
|
||||
ty = sres.field[id]["knowledge_graph_kwd"]
|
||||
try:
|
||||
obj[ty] = json.loads(sres.field[id]["content_with_weight"])
|
||||
except Exception as e:
|
||||
print(traceback.format_exc(), flush=True)
|
||||
|
||||
return get_json_result(data=obj)
|
||||
|
||||
|
||||
@ -623,7 +623,7 @@ def doc_parse_callback(doc_id, prog=None, msg=""):
|
||||
if cancel:
|
||||
raise Exception("The parsing process has been cancelled!")
|
||||
|
||||
|
||||
"""
|
||||
def doc_parse(binary, doc_name, parser_name, tenant_id, doc_id):
|
||||
match parser_name:
|
||||
case "book":
|
||||
@ -656,6 +656,7 @@ def doc_parse(binary, doc_name, parser_name, tenant_id, doc_id):
|
||||
return False
|
||||
|
||||
return True
|
||||
"""
|
||||
|
||||
|
||||
@manager.route("/<dataset_id>/documents/<document_id>/status", methods=["POST"])
|
||||
|
||||
@ -85,6 +85,7 @@ class ParserType(StrEnum):
|
||||
PICTURE = "picture"
|
||||
ONE = "one"
|
||||
AUDIO = "audio"
|
||||
KG = "knowledge_graph"
|
||||
|
||||
|
||||
class FileSource(StrEnum):
|
||||
|
||||
@ -122,7 +122,7 @@ def init_llm_factory():
|
||||
LLMService.filter_delete([LLMService.model.fid == "QAnything"])
|
||||
TenantLLMService.filter_update([TenantLLMService.model.llm_factory == "QAnything"], {"llm_factory": "Youdao"})
|
||||
TenantService.filter_update([1 == 1], {
|
||||
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio"})
|
||||
"parser_ids": "naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph"})
|
||||
## insert openai two embedding models to the current openai user.
|
||||
print("Start to insert 2 OpenAI embedding models...")
|
||||
tenant_ids = set([row["tenant_id"] for row in TenantLLMService.get_openai_models()])
|
||||
@ -145,7 +145,7 @@ def init_llm_factory():
|
||||
"""
|
||||
drop table llm;
|
||||
drop table llm_factories;
|
||||
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio';
|
||||
update tenant set parser_ids='naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph';
|
||||
alter table knowledgebase modify avatar longtext;
|
||||
alter table user modify avatar longtext;
|
||||
alter table dialog modify icon longtext;
|
||||
@ -153,7 +153,7 @@ def init_llm_factory():
|
||||
|
||||
|
||||
def add_graph_templates():
|
||||
dir = os.path.join(get_project_base_directory(), "graph", "templates")
|
||||
dir = os.path.join(get_project_base_directory(), "agent", "templates")
|
||||
for fnm in os.listdir(dir):
|
||||
try:
|
||||
cnvs = json.load(open(os.path.join(dir, fnm), "r"))
|
||||
|
||||
@ -18,12 +18,12 @@ import json
|
||||
import re
|
||||
from copy import deepcopy
|
||||
|
||||
from api.db import LLMType
|
||||
from api.db import LLMType, ParserType
|
||||
from api.db.db_models import Dialog, Conversation
|
||||
from api.db.services.common_service import CommonService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMService, TenantLLMService, LLMBundle
|
||||
from api.settings import chat_logger, retrievaler
|
||||
from api.settings import chat_logger, retrievaler, kg_retrievaler
|
||||
from rag.app.resume import forbidden_select_fields4resume
|
||||
from rag.nlp import keyword_extraction
|
||||
from rag.nlp.search import index_name
|
||||
@ -101,6 +101,9 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
yield {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
|
||||
return {"answer": "**ERROR**: Knowledge bases use different embedding models.", "reference": []}
|
||||
|
||||
is_kg = all([kb.parser_id == ParserType.KG for kb in kbs])
|
||||
retr = retrievaler if not is_kg else kg_retrievaler
|
||||
|
||||
questions = [m["content"] for m in messages if m["role"] == "user"]
|
||||
embd_mdl = LLMBundle(dialog.tenant_id, LLMType.EMBEDDING, embd_nms[0])
|
||||
if llm_id2llm_type(dialog.llm_id) == "image2text":
|
||||
@ -138,7 +141,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
else:
|
||||
if prompt_config.get("keyword", False):
|
||||
questions[-1] += keyword_extraction(chat_mdl, questions[-1])
|
||||
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
||||
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
||||
dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight,
|
||||
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
|
||||
@ -147,7 +150,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
#self-rag
|
||||
if dialog.prompt_config.get("self_rag") and not relevant(dialog.tenant_id, dialog.llm_id, questions[-1], knowledges):
|
||||
questions[-1] = rewrite(dialog.tenant_id, dialog.llm_id, questions[-1])
|
||||
kbinfos = retrievaler.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
||||
kbinfos = retr.retrieval(" ".join(questions), embd_mdl, dialog.tenant_id, dialog.kb_ids, 1, dialog.top_n,
|
||||
dialog.similarity_threshold,
|
||||
dialog.vector_similarity_weight,
|
||||
doc_ids=kwargs["doc_ids"].split(",") if "doc_ids" in kwargs else None,
|
||||
@ -179,7 +182,7 @@ def chat(dialog, messages, stream=True, **kwargs):
|
||||
nonlocal prompt_config, knowledges, kwargs, kbinfos
|
||||
refs = []
|
||||
if knowledges and (prompt_config.get("quote", True) and kwargs.get("quote", True)):
|
||||
answer, idx = retrievaler.insert_citations(answer,
|
||||
answer, idx = retr.insert_citations(answer,
|
||||
[ck["content_ltks"]
|
||||
for ck in kbinfos["chunks"]],
|
||||
[ck["vector"]
|
||||
|
||||
@ -139,6 +139,8 @@ def queue_tasks(doc, bucket, name):
|
||||
page_size = doc["parser_config"].get("task_page_size", 22)
|
||||
if doc["parser_id"] == "one":
|
||||
page_size = 1000000000
|
||||
if doc["parser_id"] == "knowledge_graph":
|
||||
page_size = 1000000000
|
||||
if not do_layout:
|
||||
page_size = 1000000000
|
||||
page_ranges = doc["parser_config"].get("pages")
|
||||
|
||||
@ -34,6 +34,7 @@ chat_logger = getLogger("chat")
|
||||
|
||||
from rag.utils.es_conn import ELASTICSEARCH
|
||||
from rag.nlp import search
|
||||
from graphrag import search as kg_search
|
||||
from api.utils import get_base_config, decrypt_database_config
|
||||
|
||||
API_VERSION = "v1"
|
||||
@ -131,7 +132,7 @@ IMAGE2TEXT_MDL = default_llm[LLM_FACTORY]["image2text_model"]
|
||||
API_KEY = LLM.get("api_key", "")
|
||||
PARSERS = LLM.get(
|
||||
"parsers",
|
||||
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio")
|
||||
"naive:General,qa:Q&A,resume:Resume,manual:Manual,table:Table,paper:Paper,book:Book,laws:Laws,presentation:Presentation,picture:Picture,one:One,audio:Audio,knowledge_graph:Knowledge Graph")
|
||||
|
||||
# distribution
|
||||
DEPENDENT_DISTRIBUTION = get_base_config("dependent_distribution", False)
|
||||
@ -204,6 +205,7 @@ PRIVILEGE_COMMAND_WHITELIST = []
|
||||
CHECK_NODES_IDENTITY = False
|
||||
|
||||
retrievaler = search.Dealer(ELASTICSEARCH)
|
||||
kg_retrievaler = kg_search.KGSearch(ELASTICSEARCH)
|
||||
|
||||
|
||||
class CustomEnum(Enum):
|
||||
|
||||
Reference in New Issue
Block a user