mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Add graphrag (#1793)
### What problem does this PR solve? #1594 ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
80
agent/component/relevant.py
Normal file
80
agent/component/relevant.py
Normal file
@ -0,0 +1,80 @@
|
||||
#
|
||||
# Copyright 2024 The InfiniFlow Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
from abc import ABC
|
||||
from api.db import LLMType
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from agent.component import GenerateParam, Generate
|
||||
from rag.utils import num_tokens_from_string, encoder
|
||||
|
||||
|
||||
class RelevantParam(GenerateParam):
|
||||
|
||||
"""
|
||||
Define the Relevant component parameters.
|
||||
"""
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.prompt = ""
|
||||
self.yes = ""
|
||||
self.no = ""
|
||||
|
||||
def check(self):
|
||||
super().check()
|
||||
self.check_empty(self.yes, "[Relevant] 'Yes'")
|
||||
self.check_empty(self.no, "[Relevant] 'No'")
|
||||
|
||||
def get_prompt(self):
|
||||
self.prompt = """
|
||||
You are a grader assessing relevance of a retrieved document to a user question.
|
||||
It does not need to be a stringent test. The goal is to filter out erroneous retrievals.
|
||||
If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant.
|
||||
Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.
|
||||
No other words needed except 'yes' or 'no'.
|
||||
"""
|
||||
return self.prompt
|
||||
|
||||
|
||||
class Relevant(Generate, ABC):
|
||||
component_name = "Relevant"
|
||||
|
||||
def _run(self, history, **kwargs):
|
||||
q = ""
|
||||
for r, c in self._canvas.history[::-1]:
|
||||
if r == "user":
|
||||
q = c
|
||||
break
|
||||
ans = self.get_input()
|
||||
ans = " - ".join(ans["content"]) if "content" in ans else ""
|
||||
if not ans:
|
||||
return Relevant.be_output(self._param.no)
|
||||
ans = "Documents: \n" + ans
|
||||
ans = f"Question: {q}\n" + ans
|
||||
chat_mdl = LLMBundle(self._canvas.get_tenant_id(), LLMType.CHAT, self._param.llm_id)
|
||||
|
||||
if num_tokens_from_string(ans) >= chat_mdl.max_length - 4:
|
||||
ans = encoder.decode(encoder.encode(ans)[:chat_mdl.max_length - 4])
|
||||
|
||||
ans = chat_mdl.chat(self._param.get_prompt(), [{"role": "user", "content": ans}],
|
||||
self._param.gen_conf())
|
||||
|
||||
print(ans, ":::::::::::::::::::::::::::::::::")
|
||||
if ans.lower().find("yes") >= 0:
|
||||
return Relevant.be_output(self._param.yes)
|
||||
if ans.lower().find("no") >= 0:
|
||||
return Relevant.be_output(self._param.no)
|
||||
assert False, f"Relevant component got: {ans}"
|
||||
|
||||
|
||||
Reference in New Issue
Block a user