mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-24 07:26:47 +08:00
Refa: refactor metadata filter (#11907)
### What problem does this PR solve? Refactor metadata filter. ### Type of change - [x] Bug Fix (non-breaking change which fixes an issue) - [x] Refactoring --------- Co-authored-by: Kevin Hu <kevinhu.sh@gmail.com>
This commit is contained in:
@ -21,10 +21,10 @@ import re
|
||||
import xxhash
|
||||
from quart import request
|
||||
|
||||
from api.db.services.dialog_service import meta_filter
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from common.metadata_utils import apply_meta_data_filter
|
||||
from api.db.services.search_service import SearchService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from api.utils.api_utils import get_data_error_result, get_json_result, server_error_response, validate_request, \
|
||||
@ -32,7 +32,7 @@ from api.utils.api_utils import get_data_error_result, get_json_result, server_e
|
||||
from rag.app.qa import beAdoc, rmPrefix
|
||||
from rag.app.tag import label_question
|
||||
from rag.nlp import rag_tokenizer, search
|
||||
from rag.prompts.generator import gen_meta_filter, cross_languages, keyword_extraction
|
||||
from rag.prompts.generator import cross_languages, keyword_extraction
|
||||
from common.string_utils import remove_redundant_spaces
|
||||
from common.constants import RetCode, LLMType, ParserType, PAGERANK_FLD
|
||||
from common import settings
|
||||
@ -317,54 +317,21 @@ async def retrieval_test():
|
||||
local_doc_ids = list(doc_ids) if doc_ids else []
|
||||
tenant_ids = []
|
||||
|
||||
meta_data_filter = {}
|
||||
chat_mdl = None
|
||||
if req.get("search_id", ""):
|
||||
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
|
||||
meta_data_filter = search_config.get("meta_data_filter", {})
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
if meta_data_filter.get("method") in ["auto", "semi_auto"]:
|
||||
chat_mdl = LLMBundle(user_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
|
||||
filters: dict = await gen_meta_filter(chat_mdl, metas, question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "semi_auto":
|
||||
selected_keys = meta_data_filter.get("semi_auto", [])
|
||||
if selected_keys:
|
||||
filtered_metas = {key: metas[key] for key in selected_keys if key in metas}
|
||||
if filtered_metas:
|
||||
chat_mdl = LLMBundle(user_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
|
||||
filters: dict = await gen_meta_filter(chat_mdl, filtered_metas, question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
local_doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if meta_data_filter["manual"] and not local_doc_ids:
|
||||
local_doc_ids = ["-999"]
|
||||
else:
|
||||
meta_data_filter = req.get("meta_data_filter")
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
chat_mdl = LLMBundle(user_id, LLMType.CHAT)
|
||||
filters: dict = await gen_meta_filter(chat_mdl, metas, question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "semi_auto":
|
||||
selected_keys = meta_data_filter.get("semi_auto", [])
|
||||
if selected_keys:
|
||||
filtered_metas = {key: metas[key] for key in selected_keys if key in metas}
|
||||
if filtered_metas:
|
||||
chat_mdl = LLMBundle(user_id, LLMType.CHAT)
|
||||
filters: dict = await gen_meta_filter(chat_mdl, filtered_metas, question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
local_doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if meta_data_filter["manual"] and not local_doc_ids:
|
||||
local_doc_ids = ["-999"]
|
||||
meta_data_filter = req.get("meta_data_filter") or {}
|
||||
if meta_data_filter.get("method") in ["auto", "semi_auto"]:
|
||||
chat_mdl = LLMBundle(user_id, LLMType.CHAT)
|
||||
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
local_doc_ids = await apply_meta_data_filter(meta_data_filter, metas, question, chat_mdl, local_doc_ids)
|
||||
|
||||
tenants = UserTenantService.query(user_id=user_id)
|
||||
for kb_id in kb_ids:
|
||||
|
||||
@ -27,7 +27,7 @@ from api.db import VALID_FILE_TYPES, FileType
|
||||
from api.db.db_models import Task
|
||||
from api.db.services import duplicate_name
|
||||
from api.db.services.document_service import DocumentService, doc_upload_and_parse
|
||||
from api.db.services.dialog_service import meta_filter, convert_conditions
|
||||
from common.metadata_utils import meta_filter, convert_conditions
|
||||
from api.db.services.file2document_service import File2DocumentService
|
||||
from api.db.services.file_service import FileService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
|
||||
@ -20,9 +20,9 @@ from quart import jsonify
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from common.metadata_utils import meta_filter, convert_conditions
|
||||
from api.utils.api_utils import apikey_required, build_error_result, get_request_json, validate_request
|
||||
from rag.app.tag import label_question
|
||||
from api.db.services.dialog_service import meta_filter, convert_conditions
|
||||
from common.constants import RetCode, LLMType
|
||||
from common import settings
|
||||
|
||||
|
||||
@ -35,7 +35,7 @@ from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
from api.db.services.task_service import TaskService, queue_tasks, cancel_all_task_of
|
||||
from api.db.services.dialog_service import meta_filter, convert_conditions
|
||||
from common.metadata_utils import meta_filter, convert_conditions
|
||||
from api.utils.api_utils import check_duplicate_ids, construct_json_result, get_error_data_result, get_parser_config, get_result, server_error_response, token_required, \
|
||||
get_request_json
|
||||
from rag.app.qa import beAdoc, rmPrefix
|
||||
|
||||
@ -28,10 +28,11 @@ from api.db.services.canvas_service import completion as agent_completion
|
||||
from api.db.services.conversation_service import ConversationService
|
||||
from api.db.services.conversation_service import async_iframe_completion as iframe_completion
|
||||
from api.db.services.conversation_service import async_completion as rag_completion
|
||||
from api.db.services.dialog_service import DialogService, async_ask, async_chat, gen_mindmap, meta_filter
|
||||
from api.db.services.dialog_service import DialogService, async_ask, async_chat, gen_mindmap
|
||||
from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from common.metadata_utils import apply_meta_data_filter
|
||||
from api.db.services.search_service import SearchService
|
||||
from api.db.services.user_service import UserTenantService
|
||||
from common.misc_utils import get_uuid
|
||||
@ -39,7 +40,7 @@ from api.utils.api_utils import check_duplicate_ids, get_data_openai, get_error_
|
||||
get_result, get_request_json, server_error_response, token_required, validate_request
|
||||
from rag.app.tag import label_question
|
||||
from rag.prompts.template import load_prompt
|
||||
from rag.prompts.generator import cross_languages, gen_meta_filter, keyword_extraction, chunks_format
|
||||
from rag.prompts.generator import cross_languages, keyword_extraction, chunks_format
|
||||
from common.constants import RetCode, LLMType, StatusEnum
|
||||
from common import settings
|
||||
|
||||
@ -974,54 +975,21 @@ async def retrieval_test_embedded():
|
||||
tenant_ids = []
|
||||
_question = question
|
||||
|
||||
meta_data_filter = {}
|
||||
chat_mdl = None
|
||||
if req.get("search_id", ""):
|
||||
search_config = SearchService.get_detail(req.get("search_id", "")).get("search_config", {})
|
||||
meta_data_filter = search_config.get("meta_data_filter", {})
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
if meta_data_filter.get("method") in ["auto", "semi_auto"]:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
|
||||
filters: dict = await gen_meta_filter(chat_mdl, metas, _question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "semi_auto":
|
||||
selected_keys = meta_data_filter.get("semi_auto", [])
|
||||
if selected_keys:
|
||||
filtered_metas = {key: metas[key] for key in selected_keys if key in metas}
|
||||
if filtered_metas:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT, llm_name=search_config.get("chat_id", ""))
|
||||
filters: dict = await gen_meta_filter(chat_mdl, filtered_metas, _question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
local_doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if meta_data_filter["manual"] and not local_doc_ids:
|
||||
local_doc_ids = ["-999"]
|
||||
else:
|
||||
meta_data_filter = req.get("meta_data_filter")
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
filters: dict = await gen_meta_filter(chat_mdl, metas, question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "semi_auto":
|
||||
selected_keys = meta_data_filter.get("semi_auto", [])
|
||||
if selected_keys:
|
||||
filtered_metas = {key: metas[key] for key in selected_keys if key in metas}
|
||||
if filtered_metas:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
filters: dict = await gen_meta_filter(chat_mdl, filtered_metas, question)
|
||||
local_doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not local_doc_ids:
|
||||
local_doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
local_doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if meta_data_filter["manual"] and not local_doc_ids:
|
||||
local_doc_ids = ["-999"]
|
||||
meta_data_filter = req.get("meta_data_filter") or {}
|
||||
if meta_data_filter.get("method") in ["auto", "semi_auto"]:
|
||||
chat_mdl = LLMBundle(tenant_id, LLMType.CHAT)
|
||||
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
local_doc_ids = await apply_meta_data_filter(meta_data_filter, metas, _question, chat_mdl, local_doc_ids)
|
||||
|
||||
tenants = UserTenantService.query(user_id=tenant_id)
|
||||
for kb_id in kb_ids:
|
||||
|
||||
@ -32,6 +32,7 @@ from api.db.services.document_service import DocumentService
|
||||
from api.db.services.knowledgebase_service import KnowledgebaseService
|
||||
from api.db.services.langfuse_service import TenantLangfuseService
|
||||
from api.db.services.llm_service import LLMBundle
|
||||
from common.metadata_utils import apply_meta_data_filter
|
||||
from api.db.services.tenant_llm_service import TenantLLMService
|
||||
from common.time_utils import current_timestamp, datetime_format
|
||||
from graphrag.general.mind_map_extractor import MindMapExtractor
|
||||
@ -39,7 +40,7 @@ from rag.app.resume import forbidden_select_fields4resume
|
||||
from rag.app.tag import label_question
|
||||
from rag.nlp.search import index_name
|
||||
from rag.prompts.generator import chunks_format, citation_prompt, cross_languages, full_question, kb_prompt, keyword_extraction, message_fit_in, \
|
||||
gen_meta_filter, PROMPT_JINJA_ENV, ASK_SUMMARY
|
||||
PROMPT_JINJA_ENV, ASK_SUMMARY
|
||||
from common.token_utils import num_tokens_from_string
|
||||
from rag.utils.tavily_conn import Tavily
|
||||
from common.string_utils import remove_redundant_spaces
|
||||
@ -277,77 +278,6 @@ def repair_bad_citation_formats(answer: str, kbinfos: dict, idx: set):
|
||||
return answer, idx
|
||||
|
||||
|
||||
def convert_conditions(metadata_condition):
|
||||
if metadata_condition is None:
|
||||
metadata_condition = {}
|
||||
op_mapping = {
|
||||
"is": "=",
|
||||
"not is": "≠"
|
||||
}
|
||||
return [
|
||||
{
|
||||
"op": op_mapping.get(cond["comparison_operator"], cond["comparison_operator"]),
|
||||
"key": cond["name"],
|
||||
"value": cond["value"]
|
||||
}
|
||||
for cond in metadata_condition.get("conditions", [])
|
||||
]
|
||||
|
||||
|
||||
def meta_filter(metas: dict, filters: list[dict], logic: str = "and"):
|
||||
doc_ids = set([])
|
||||
|
||||
def filter_out(v2docs, operator, value):
|
||||
ids = []
|
||||
for input, docids in v2docs.items():
|
||||
if operator in ["=", "≠", ">", "<", "≥", "≤"]:
|
||||
try:
|
||||
input = float(input)
|
||||
value = float(value)
|
||||
except Exception:
|
||||
input = str(input)
|
||||
value = str(value)
|
||||
|
||||
for conds in [
|
||||
(operator == "contains", str(value).lower() in str(input).lower()),
|
||||
(operator == "not contains", str(value).lower() not in str(input).lower()),
|
||||
(operator == "in", str(input).lower() in str(value).lower()),
|
||||
(operator == "not in", str(input).lower() not in str(value).lower()),
|
||||
(operator == "start with", str(input).lower().startswith(str(value).lower())),
|
||||
(operator == "end with", str(input).lower().endswith(str(value).lower())),
|
||||
(operator == "empty", not input),
|
||||
(operator == "not empty", input),
|
||||
(operator == "=", input == value),
|
||||
(operator == "≠", input != value),
|
||||
(operator == ">", input > value),
|
||||
(operator == "<", input < value),
|
||||
(operator == "≥", input >= value),
|
||||
(operator == "≤", input <= value),
|
||||
]:
|
||||
try:
|
||||
if all(conds):
|
||||
ids.extend(docids)
|
||||
break
|
||||
except Exception:
|
||||
pass
|
||||
return ids
|
||||
|
||||
for k, v2docs in metas.items():
|
||||
for f in filters:
|
||||
if k != f["key"]:
|
||||
continue
|
||||
ids = filter_out(v2docs, f["op"], f["value"])
|
||||
if not doc_ids:
|
||||
doc_ids = set(ids)
|
||||
else:
|
||||
if logic == "and":
|
||||
doc_ids = doc_ids & set(ids)
|
||||
else:
|
||||
doc_ids = doc_ids | set(ids)
|
||||
if not doc_ids:
|
||||
return []
|
||||
return list(doc_ids)
|
||||
|
||||
async def async_chat(dialog, messages, stream=True, **kwargs):
|
||||
assert messages[-1]["role"] == "user", "The last content of this conversation is not from user."
|
||||
if not dialog.kb_ids and not dialog.prompt_config.get("tavily_api_key"):
|
||||
@ -420,25 +350,13 @@ async def async_chat(dialog, messages, stream=True, **kwargs):
|
||||
|
||||
if dialog.meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(dialog.kb_ids)
|
||||
if dialog.meta_data_filter.get("method") == "auto":
|
||||
filters: dict = await gen_meta_filter(chat_mdl, metas, questions[-1])
|
||||
attachments.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not attachments:
|
||||
attachments = None
|
||||
elif dialog.meta_data_filter.get("method") == "semi_auto":
|
||||
selected_keys = dialog.meta_data_filter.get("semi_auto", [])
|
||||
if selected_keys:
|
||||
filtered_metas = {key: metas[key] for key in selected_keys if key in metas}
|
||||
if filtered_metas:
|
||||
filters: dict = await gen_meta_filter(chat_mdl, filtered_metas, questions[-1])
|
||||
attachments.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not attachments:
|
||||
attachments = None
|
||||
elif dialog.meta_data_filter.get("method") == "manual":
|
||||
conds = dialog.meta_data_filter["manual"]
|
||||
attachments.extend(meta_filter(metas, conds, dialog.meta_data_filter.get("logic", "and")))
|
||||
if conds and not attachments:
|
||||
attachments = ["-999"]
|
||||
attachments = await apply_meta_data_filter(
|
||||
dialog.meta_data_filter,
|
||||
metas,
|
||||
questions[-1],
|
||||
chat_mdl,
|
||||
attachments,
|
||||
)
|
||||
|
||||
if prompt_config.get("keyword", False):
|
||||
questions[-1] += await keyword_extraction(chat_mdl, questions[-1])
|
||||
@ -838,24 +756,7 @@ async def async_ask(question, kb_ids, tenant_id, chat_llm_name=None, search_conf
|
||||
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
filters: dict = await gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "semi_auto":
|
||||
selected_keys = meta_data_filter.get("semi_auto", [])
|
||||
if selected_keys:
|
||||
filtered_metas = {key: metas[key] for key in selected_keys if key in metas}
|
||||
if filtered_metas:
|
||||
filters: dict = await gen_meta_filter(chat_mdl, filtered_metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if meta_data_filter["manual"] and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
doc_ids = await apply_meta_data_filter(meta_data_filter, metas, question, chat_mdl, doc_ids)
|
||||
|
||||
kbinfos = retriever.retrieval(
|
||||
question=question,
|
||||
@ -922,24 +823,7 @@ async def gen_mindmap(question, kb_ids, tenant_id, search_config={}):
|
||||
|
||||
if meta_data_filter:
|
||||
metas = DocumentService.get_meta_by_kbs(kb_ids)
|
||||
if meta_data_filter.get("method") == "auto":
|
||||
filters: dict = await gen_meta_filter(chat_mdl, metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "semi_auto":
|
||||
selected_keys = meta_data_filter.get("semi_auto", [])
|
||||
if selected_keys:
|
||||
filtered_metas = {key: metas[key] for key in selected_keys if key in metas}
|
||||
if filtered_metas:
|
||||
filters: dict = await gen_meta_filter(chat_mdl, filtered_metas, question)
|
||||
doc_ids.extend(meta_filter(metas, filters["conditions"], filters.get("logic", "and")))
|
||||
if not doc_ids:
|
||||
doc_ids = None
|
||||
elif meta_data_filter.get("method") == "manual":
|
||||
doc_ids.extend(meta_filter(metas, meta_data_filter["manual"], meta_data_filter.get("logic", "and")))
|
||||
if meta_data_filter["manual"] and not doc_ids:
|
||||
doc_ids = ["-999"]
|
||||
doc_ids = await apply_meta_data_filter(meta_data_filter, metas, question, chat_mdl, doc_ids)
|
||||
|
||||
ranks = settings.retriever.retrieval(
|
||||
question=question,
|
||||
|
||||
Reference in New Issue
Block a user