mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Feat: dataflow supports Spreadsheet and Word processor document (#9996)
### What problem does this PR solve? Dataflow supports Spreadsheet and Word processor document ### Type of change - [x] New Feature (non-breaking change which adds functionality)
This commit is contained in:
@ -22,10 +22,10 @@ from openpyxl import Workbook, load_workbook
|
||||
from rag.nlp import find_codec
|
||||
|
||||
# copied from `/openpyxl/cell/cell.py`
|
||||
ILLEGAL_CHARACTERS_RE = re.compile(r'[\000-\010]|[\013-\014]|[\016-\037]')
|
||||
ILLEGAL_CHARACTERS_RE = re.compile(r"[\000-\010]|[\013-\014]|[\016-\037]")
|
||||
|
||||
|
||||
class RAGFlowExcelParser:
|
||||
|
||||
@staticmethod
|
||||
def _load_excel_to_workbook(file_like_object):
|
||||
if isinstance(file_like_object, bytes):
|
||||
@ -36,7 +36,7 @@ class RAGFlowExcelParser:
|
||||
file_head = file_like_object.read(4)
|
||||
file_like_object.seek(0)
|
||||
|
||||
if not (file_head.startswith(b'PK\x03\x04') or file_head.startswith(b'\xD0\xCF\x11\xE0')):
|
||||
if not (file_head.startswith(b"PK\x03\x04") or file_head.startswith(b"\xd0\xcf\x11\xe0")):
|
||||
logging.info("Not an Excel file, converting CSV to Excel Workbook")
|
||||
|
||||
try:
|
||||
@ -48,7 +48,7 @@ class RAGFlowExcelParser:
|
||||
raise Exception(f"Failed to parse CSV and convert to Excel Workbook: {e_csv}")
|
||||
|
||||
try:
|
||||
return load_workbook(file_like_object,data_only= True)
|
||||
return load_workbook(file_like_object, data_only=True)
|
||||
except Exception as e:
|
||||
logging.info(f"openpyxl load error: {e}, try pandas instead")
|
||||
try:
|
||||
@ -59,7 +59,7 @@ class RAGFlowExcelParser:
|
||||
except Exception as ex:
|
||||
logging.info(f"pandas with default engine load error: {ex}, try calamine instead")
|
||||
file_like_object.seek(0)
|
||||
df = pd.read_excel(file_like_object, engine='calamine')
|
||||
df = pd.read_excel(file_like_object, engine="calamine")
|
||||
return RAGFlowExcelParser._dataframe_to_workbook(df)
|
||||
except Exception as e_pandas:
|
||||
raise Exception(f"pandas.read_excel error: {e_pandas}, original openpyxl error: {e}")
|
||||
@ -116,9 +116,7 @@ class RAGFlowExcelParser:
|
||||
tb = ""
|
||||
tb += f"<table><caption>{sheetname}</caption>"
|
||||
tb += tb_rows_0
|
||||
for r in list(
|
||||
rows[1 + chunk_i * chunk_rows: min(1 + (chunk_i + 1) * chunk_rows, len(rows))]
|
||||
):
|
||||
for r in list(rows[1 + chunk_i * chunk_rows : min(1 + (chunk_i + 1) * chunk_rows, len(rows))]):
|
||||
tb += "<tr>"
|
||||
for i, c in enumerate(r):
|
||||
if c.value is None:
|
||||
@ -133,8 +131,16 @@ class RAGFlowExcelParser:
|
||||
|
||||
def markdown(self, fnm):
|
||||
import pandas as pd
|
||||
|
||||
file_like_object = BytesIO(fnm) if not isinstance(fnm, str) else fnm
|
||||
try:
|
||||
file_like_object.seek(0)
|
||||
df = pd.read_excel(file_like_object)
|
||||
except Exception as e:
|
||||
logging.warning(f"Parse spreadsheet error: {e}, trying to interpret as CSV file")
|
||||
file_like_object.seek(0)
|
||||
df = pd.read_csv(file_like_object)
|
||||
df = df.replace(r"^\s*$", "", regex=True)
|
||||
return df.to_markdown(index=False)
|
||||
|
||||
def __call__(self, fnm):
|
||||
|
||||
@ -73,11 +73,13 @@ class Chunker(ProcessBase):
|
||||
|
||||
def _general(self, from_upstream: ChunkerFromUpstream):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to chunk via `General`.")
|
||||
if from_upstream.output_format in ["markdown", "text"]:
|
||||
if from_upstream.output_format in ["markdown", "text", "html"]:
|
||||
if from_upstream.output_format == "markdown":
|
||||
payload = from_upstream.markdown_result
|
||||
else: # == "text"
|
||||
elif from_upstream.output_format == "text":
|
||||
payload = from_upstream.text_result
|
||||
else: # == "html"
|
||||
payload = from_upstream.html_result
|
||||
|
||||
if not payload:
|
||||
payload = ""
|
||||
@ -90,6 +92,7 @@ class Chunker(ProcessBase):
|
||||
)
|
||||
return [{"text": c} for c in cks]
|
||||
|
||||
# json
|
||||
sections, section_images = [], []
|
||||
for o in from_upstream.json_result or []:
|
||||
sections.append((o.get("text", ""), o.get("position_tag", "")))
|
||||
|
||||
@ -29,7 +29,7 @@ class ChunkerFromUpstream(BaseModel):
|
||||
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
|
||||
markdown_result: str | None = Field(default=None, alias="markdown")
|
||||
text_result: str | None = Field(default=None, alias="text")
|
||||
html_result: str | None = Field(default=None, alias="html")
|
||||
html_result: list[str] | None = Field(default=None, alias="html")
|
||||
|
||||
model_config = ConfigDict(populate_by_name=True, extra="forbid")
|
||||
|
||||
|
||||
@ -12,6 +12,7 @@
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import logging
|
||||
import random
|
||||
|
||||
import trio
|
||||
@ -29,8 +30,18 @@ class ParserParam(ProcessParamBase):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.allowed_output_format = {
|
||||
"pdf": ["json", "markdown"],
|
||||
"excel": ["json", "markdown", "html"],
|
||||
"pdf": [
|
||||
"json",
|
||||
"markdown",
|
||||
],
|
||||
"spreadsheet": [
|
||||
"json",
|
||||
"markdown",
|
||||
"html",
|
||||
],
|
||||
"word": [
|
||||
"json",
|
||||
],
|
||||
"ppt": [],
|
||||
"image": [],
|
||||
"email": [],
|
||||
@ -44,12 +55,25 @@ class ParserParam(ProcessParamBase):
|
||||
"parse_method": "deepdoc", # deepdoc/plain_text/vlm
|
||||
"vlm_name": "",
|
||||
"lang": "Chinese",
|
||||
"suffix": ["pdf"],
|
||||
"suffix": [
|
||||
"pdf",
|
||||
],
|
||||
"output_format": "json",
|
||||
},
|
||||
"excel": {
|
||||
"spreadsheet": {
|
||||
"output_format": "html",
|
||||
"suffix": ["xls", "xlsx", "csv"],
|
||||
"suffix": [
|
||||
"xls",
|
||||
"xlsx",
|
||||
"csv",
|
||||
],
|
||||
},
|
||||
"word": {
|
||||
"suffix": [
|
||||
"doc",
|
||||
"docx",
|
||||
],
|
||||
"output_format": "json",
|
||||
},
|
||||
"ppt": {},
|
||||
"image": {
|
||||
@ -76,10 +100,15 @@ class ParserParam(ProcessParamBase):
|
||||
pdf_output_format = pdf_config.get("output_format", "")
|
||||
self.check_valid_value(pdf_output_format, "PDF output format abnormal.", self.allowed_output_format["pdf"])
|
||||
|
||||
excel_config = self.setups.get("excel", "")
|
||||
if excel_config:
|
||||
excel_output_format = excel_config.get("output_format", "")
|
||||
self.check_valid_value(excel_output_format, "Excel output format abnormal.", self.allowed_output_format["excel"])
|
||||
spreadsheet_config = self.setups.get("spreadsheet", "")
|
||||
if spreadsheet_config:
|
||||
spreadsheet_output_format = spreadsheet_config.get("output_format", "")
|
||||
self.check_valid_value(spreadsheet_output_format, "Spreadsheet output format abnormal.", self.allowed_output_format["spreadsheet"])
|
||||
|
||||
doc_config = self.setups.get("doc", "")
|
||||
if doc_config:
|
||||
doc_output_format = doc_config.get("output_format", "")
|
||||
self.check_valid_value(doc_output_format, "Word processer document output format abnormal.", self.allowed_output_format["doc"])
|
||||
|
||||
image_config = self.setups.get("image", "")
|
||||
if image_config:
|
||||
@ -93,10 +122,13 @@ class ParserParam(ProcessParamBase):
|
||||
class Parser(ProcessBase):
|
||||
component_name = "Parser"
|
||||
|
||||
def _pdf(self, blob):
|
||||
def _pdf(self, from_upstream: ParserFromUpstream):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a PDF.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
conf = self._param.setups["pdf"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
if conf.get("parse_method") == "deepdoc":
|
||||
bboxes = RAGFlowPdfParser().parse_into_bboxes(blob, callback=self.callback)
|
||||
elif conf.get("parse_method") == "plain_text":
|
||||
@ -110,6 +142,7 @@ class Parser(ProcessBase):
|
||||
for t, poss in lines:
|
||||
pn, x0, x1, top, bott = poss.split(" ")
|
||||
bboxes.append({"page_number": int(pn), "x0": float(x0), "x1": float(x1), "top": float(top), "bottom": float(bott), "text": t})
|
||||
|
||||
if conf.get("output_format") == "json":
|
||||
self.set_output("json", bboxes)
|
||||
if conf.get("output_format") == "markdown":
|
||||
@ -123,23 +156,53 @@ class Parser(ProcessBase):
|
||||
mkdn += b.get("text", "") + "\n"
|
||||
self.set_output("markdown", mkdn)
|
||||
|
||||
def _excel(self, blob):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Excel.")
|
||||
conf = self._param.setups["excel"]
|
||||
def _spreadsheet(self, from_upstream: ParserFromUpstream):
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Spreadsheet.")
|
||||
|
||||
blob = from_upstream.blob
|
||||
conf = self._param.setups["spreadsheet"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
excel_parser = ExcelParser()
|
||||
|
||||
print("spreadsheet {conf=}", flush=True)
|
||||
spreadsheet_parser = ExcelParser()
|
||||
if conf.get("output_format") == "html":
|
||||
html = excel_parser.html(blob, 1000000000)
|
||||
html = spreadsheet_parser.html(blob, 1000000000)
|
||||
self.set_output("html", html)
|
||||
elif conf.get("output_format") == "json":
|
||||
self.set_output("json", [{"text": txt} for txt in excel_parser(blob) if txt])
|
||||
self.set_output("json", [{"text": txt} for txt in spreadsheet_parser(blob) if txt])
|
||||
elif conf.get("output_format") == "markdown":
|
||||
self.set_output("markdown", excel_parser.markdown(blob))
|
||||
self.set_output("markdown", spreadsheet_parser.markdown(blob))
|
||||
|
||||
def _word(self, from_upstream: ParserFromUpstream):
|
||||
from tika import parser as word_parser
|
||||
|
||||
self.callback(random.randint(1, 5) / 100.0, "Start to work on a Word Processor Document")
|
||||
|
||||
blob = from_upstream.blob
|
||||
name = from_upstream.name
|
||||
conf = self._param.setups["word"]
|
||||
self.set_output("output_format", conf["output_format"])
|
||||
|
||||
print("word {conf=}", flush=True)
|
||||
doc_parsed = word_parser.from_buffer(blob)
|
||||
|
||||
sections = []
|
||||
if doc_parsed.get("content"):
|
||||
sections = doc_parsed["content"].split("\n")
|
||||
sections = [{"text": section} for section in sections if section]
|
||||
else:
|
||||
logging.warning(f"tika.parser got empty content from {name}.")
|
||||
|
||||
# json
|
||||
assert conf.get("output_format") == "json", "have to be json for doc"
|
||||
if conf.get("output_format") == "json":
|
||||
self.set_output("json", sections)
|
||||
|
||||
async def _invoke(self, **kwargs):
|
||||
function_map = {
|
||||
"pdf": self._pdf,
|
||||
"excel": self._excel,
|
||||
"spreadsheet": self._spreadsheet,
|
||||
"word": self._word,
|
||||
}
|
||||
try:
|
||||
from_upstream = ParserFromUpstream.model_validate(kwargs)
|
||||
@ -150,5 +213,5 @@ class Parser(ProcessBase):
|
||||
for p_type, conf in self._param.setups.items():
|
||||
if from_upstream.name.split(".")[-1].lower() not in conf.get("suffix", []):
|
||||
continue
|
||||
await trio.to_thread.run_sync(function_map[p_type], from_upstream.blob)
|
||||
await trio.to_thread.run_sync(function_map[p_type], from_upstream)
|
||||
break
|
||||
|
||||
@ -23,13 +23,20 @@
|
||||
],
|
||||
"output_format": "json"
|
||||
},
|
||||
"excel": {
|
||||
"output_format": "html",
|
||||
"spreadsheet": {
|
||||
"suffix": [
|
||||
"xls",
|
||||
"xlsx",
|
||||
"csv"
|
||||
]
|
||||
],
|
||||
"output_format": "html"
|
||||
},
|
||||
"word": {
|
||||
"suffix": [
|
||||
"doc",
|
||||
"docx"
|
||||
],
|
||||
"output_format": "json"
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -31,7 +31,7 @@ class TokenizerFromUpstream(BaseModel):
|
||||
json_result: list[dict[str, Any]] | None = Field(default=None, alias="json")
|
||||
markdown_result: str | None = Field(default=None, alias="markdown")
|
||||
text_result: str | None = Field(default=None, alias="text")
|
||||
html_result: str | None = Field(default=None, alias="html")
|
||||
html_result: list[str] | None = Field(default=None, alias="html")
|
||||
|
||||
model_config = ConfigDict(populate_by_name=True, extra="forbid")
|
||||
|
||||
|
||||
@ -117,11 +117,13 @@ class Tokenizer(ProcessBase):
|
||||
ck["content_sm_ltks"] = rag_tokenizer.fine_grained_tokenize(ck["content_ltks"])
|
||||
if i % 100 == 99:
|
||||
self.callback(i * 1.0 / len(chunks) / parts)
|
||||
elif from_upstream.output_format in ["markdown", "text"]:
|
||||
elif from_upstream.output_format in ["markdown", "text", "html"]:
|
||||
if from_upstream.output_format == "markdown":
|
||||
payload = from_upstream.markdown_result
|
||||
else: # == "text"
|
||||
elif from_upstream.output_format == "text":
|
||||
payload = from_upstream.text_result
|
||||
else: # == "html"
|
||||
payload = from_upstream.html_result
|
||||
|
||||
if not payload:
|
||||
return ""
|
||||
|
||||
@ -751,6 +751,8 @@ class SILICONFLOWEmbed(Base):
|
||||
token_count = 0
|
||||
for i in range(0, len(texts), batch_size):
|
||||
texts_batch = texts[i : i + batch_size]
|
||||
texts_batch = [" " if not text.strip() else text for text in texts_batch]
|
||||
|
||||
payload = {
|
||||
"model": self.model_name,
|
||||
"input": texts_batch,
|
||||
|
||||
@ -518,7 +518,7 @@ def hierarchical_merge(bull, sections, depth):
|
||||
return res
|
||||
|
||||
|
||||
def naive_merge(sections, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
|
||||
def naive_merge(sections: str | list, chunk_token_num=128, delimiter="\n。;!?", overlapped_percent=0):
|
||||
from deepdoc.parser.pdf_parser import RAGFlowPdfParser
|
||||
if not sections:
|
||||
return []
|
||||
|
||||
Reference in New Issue
Block a user