mirror of
https://github.com/infiniflow/ragflow.git
synced 2025-12-08 20:42:30 +08:00
Fix errors detected by Ruff (#3918)
### What problem does this PR solve? Fix errors detected by Ruff ### Type of change - [x] Refactoring
This commit is contained in:
@ -18,7 +18,6 @@ from .recognizer import Recognizer
|
||||
from .layout_recognizer import LayoutRecognizer
|
||||
from .table_structure_recognizer import TableStructureRecognizer
|
||||
|
||||
|
||||
def init_in_out(args):
|
||||
from PIL import Image
|
||||
import os
|
||||
@ -47,7 +46,7 @@ def init_in_out(args):
|
||||
try:
|
||||
images.append(Image.open(fnm))
|
||||
outputs.append(os.path.split(fnm)[-1])
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
traceback.print_exc()
|
||||
|
||||
if os.path.isdir(args.inputs):
|
||||
@ -56,6 +55,16 @@ def init_in_out(args):
|
||||
else:
|
||||
images_and_outputs(args.inputs)
|
||||
|
||||
for i in range(len(outputs)): outputs[i] = os.path.join(args.output_dir, outputs[i])
|
||||
for i in range(len(outputs)):
|
||||
outputs[i] = os.path.join(args.output_dir, outputs[i])
|
||||
|
||||
return images, outputs
|
||||
return images, outputs
|
||||
|
||||
|
||||
__all__ = [
|
||||
"OCR",
|
||||
"Recognizer",
|
||||
"LayoutRecognizer",
|
||||
"TableStructureRecognizer",
|
||||
"init_in_out",
|
||||
]
|
||||
|
||||
@ -42,7 +42,7 @@ class LayoutRecognizer(Recognizer):
|
||||
get_project_base_directory(),
|
||||
"rag/res/deepdoc")
|
||||
super().__init__(self.labels, domain, model_dir)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
||||
local_dir_use_symlinks=False)
|
||||
@ -77,7 +77,7 @@ class LayoutRecognizer(Recognizer):
|
||||
"page_number": pn,
|
||||
} for b in lts if float(b["score"]) >= 0.8 or b["type"] not in self.garbage_layouts]
|
||||
lts = self.sort_Y_firstly(lts, np.mean(
|
||||
[l["bottom"] - l["top"] for l in lts]) / 2)
|
||||
[lt["bottom"] - lt["top"] for lt in lts]) / 2)
|
||||
lts = self.layouts_cleanup(bxs, lts)
|
||||
page_layout.append(lts)
|
||||
|
||||
|
||||
@ -19,7 +19,9 @@ from huggingface_hub import snapshot_download
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from .operators import *
|
||||
import math
|
||||
import numpy as np
|
||||
import cv2
|
||||
import onnxruntime as ort
|
||||
|
||||
from .postprocess import build_post_process
|
||||
@ -484,7 +486,7 @@ class OCR(object):
|
||||
"rag/res/deepdoc")
|
||||
self.text_detector = TextDetector(model_dir)
|
||||
self.text_recognizer = TextRecognizer(model_dir)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
model_dir = snapshot_download(repo_id="InfiniFlow/deepdoc",
|
||||
local_dir=os.path.join(get_project_base_directory(), "rag/res/deepdoc"),
|
||||
local_dir_use_symlinks=False)
|
||||
|
||||
@ -232,7 +232,7 @@ class LinearResize(object):
|
||||
"""
|
||||
assert len(self.target_size) == 2
|
||||
assert self.target_size[0] > 0 and self.target_size[1] > 0
|
||||
im_channel = im.shape[2]
|
||||
_im_channel = im.shape[2]
|
||||
im_scale_y, im_scale_x = self.generate_scale(im)
|
||||
im = cv2.resize(
|
||||
im,
|
||||
@ -255,7 +255,7 @@ class LinearResize(object):
|
||||
im_scale_y: the resize ratio of Y
|
||||
"""
|
||||
origin_shape = im.shape[:2]
|
||||
im_c = im.shape[2]
|
||||
_im_c = im.shape[2]
|
||||
if self.keep_ratio:
|
||||
im_size_min = np.min(origin_shape)
|
||||
im_size_max = np.max(origin_shape)
|
||||
@ -581,7 +581,7 @@ class SRResize(object):
|
||||
return data
|
||||
|
||||
images_HR = data["image_hr"]
|
||||
label_strs = data["label"]
|
||||
_label_strs = data["label"]
|
||||
transform = ResizeNormalize((imgW, imgH))
|
||||
images_HR = transform(images_HR)
|
||||
data["img_hr"] = images_HR
|
||||
|
||||
@ -121,7 +121,7 @@ class DBPostProcess(object):
|
||||
outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
|
||||
cv2.CHAIN_APPROX_SIMPLE)
|
||||
if len(outs) == 3:
|
||||
img, contours, _ = outs[0], outs[1], outs[2]
|
||||
_img, contours, _ = outs[0], outs[1], outs[2]
|
||||
elif len(outs) == 2:
|
||||
contours, _ = outs[0], outs[1]
|
||||
|
||||
|
||||
@ -13,15 +13,18 @@
|
||||
|
||||
import logging
|
||||
import os
|
||||
import math
|
||||
import numpy as np
|
||||
import cv2
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
import onnxruntime as ort
|
||||
from huggingface_hub import snapshot_download
|
||||
|
||||
from api.utils.file_utils import get_project_base_directory
|
||||
from .operators import *
|
||||
|
||||
|
||||
class Recognizer(object):
|
||||
def __init__(self, label_list, task_name, model_dir=None):
|
||||
"""
|
||||
@ -277,7 +280,8 @@ class Recognizer(object):
|
||||
return
|
||||
min_dis, min_i = 1000000, None
|
||||
for i,b in enumerate(boxes):
|
||||
if box.get("layoutno", "0") != b.get("layoutno", "0"): continue
|
||||
if box.get("layoutno", "0") != b.get("layoutno", "0"):
|
||||
continue
|
||||
dis = min(abs(box["x0"] - b["x0"]), abs(box["x1"] - b["x1"]), abs(box["x0"]+box["x1"] - b["x1"] - b["x0"])/2)
|
||||
if dis < min_dis:
|
||||
min_i = i
|
||||
@ -402,7 +406,8 @@ class Recognizer(object):
|
||||
scores = np.max(boxes[:, 4:], axis=1)
|
||||
boxes = boxes[scores > thr, :]
|
||||
scores = scores[scores > thr]
|
||||
if len(boxes) == 0: return []
|
||||
if len(boxes) == 0:
|
||||
return []
|
||||
|
||||
# Get the class with the highest confidence
|
||||
class_ids = np.argmax(boxes[:, 4:], axis=1)
|
||||
@ -432,7 +437,8 @@ class Recognizer(object):
|
||||
for i in range(len(image_list)):
|
||||
if not isinstance(image_list[i], np.ndarray):
|
||||
imgs.append(np.array(image_list[i]))
|
||||
else: imgs.append(image_list[i])
|
||||
else:
|
||||
imgs.append(image_list[i])
|
||||
|
||||
batch_loop_cnt = math.ceil(float(len(imgs)) / batch_size)
|
||||
for i in range(batch_loop_cnt):
|
||||
|
||||
Reference in New Issue
Block a user